所以當(dāng)時(shí).取最小值3.即.當(dāng)時(shí). 查看更多

 

題目列表(包括答案和解析)

汕頭二中擬建一座長米,寬米的長方形體育館.按照建筑要求,每隔米(,為正常數(shù))需打建一個(gè)樁位,每個(gè)樁位需花費(fèi)萬元(樁位視為一點(diǎn)且打在長方形的邊上),樁位之間的米墻面需花萬元,在不計(jì)地板和天花板的情況下,當(dāng)為何值時(shí),所需總費(fèi)用最少?

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。先求需打個(gè)樁位.再求解墻面所需費(fèi)用為:,最后表示總費(fèi)用,利用導(dǎo)數(shù)判定單調(diào)性,求解最值。

解:由題意可知,需打個(gè)樁位. …………………2分

墻面所需費(fèi)用為:,……4分

∴所需總費(fèi)用)…7分

,則 

當(dāng)時(shí),;當(dāng)時(shí),

∴當(dāng)時(shí),取極小值為.而在內(nèi)極值點(diǎn)唯一,所以.∴當(dāng)時(shí),(萬元),即每隔3米打建一個(gè)樁位時(shí),所需總費(fèi)用最小為1170萬元.

 

查看答案和解析>>

已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為d,為其前n項(xiàng)和,且滿足,.?dāng)?shù)列滿足,為數(shù)列的前n項(xiàng)和.

(1)求數(shù)列的通項(xiàng)公式和數(shù)列的前n項(xiàng)和;

(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請(qǐng)說明理由.

【解析】第一問利用在中,令n=1,n=2,

   即      

解得,, [

時(shí),滿足,

,

第二問,①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

 ,等號(hào)在n=2時(shí)取得.

此時(shí) 需滿足.  

②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時(shí)取得最小值-6.

此時(shí) 需滿足

第三問,

     若成等比數(shù)列,則,

即.

,可得,即,

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

時(shí),滿足,

(2)①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

 ,等號(hào)在n=2時(shí)取得.

此時(shí) 需滿足.  

②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時(shí)取得最小值-6.

此時(shí) 需滿足

綜合①、②可得的取值范圍是

(3)

     若成等比數(shù)列,則,

即.

,可得,即

,且m>1,所以m=2,此時(shí)n=12.

因此,當(dāng)且僅當(dāng)m=2, n=12時(shí),數(shù)列中的成等比數(shù)列

 

查看答案和解析>>

已知函數(shù)

(1)求函數(shù)的定義域;

(2)求函數(shù)在區(qū)間上的最小值;

(3)已知,命題p:關(guān)于x的不等式對(duì)函數(shù)的定義域上的任意恒成立;命題q:指數(shù)函數(shù)是增函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.

【解析】第一問中,利用由 即

第二問中,得:

,

第三問中,由在函數(shù)的定義域上 的任意,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立。當(dāng)命題p為真時(shí),;而命題q為真時(shí):指數(shù)函數(shù).因?yàn)椤皃或q”為真,“p且q”為假,所以

當(dāng)命題p為真,命題q為假時(shí);當(dāng)命題p為假,命題q為真時(shí)分為兩種情況討論即可 。

解:(1)由 即

(2)得:

,

(3)由在函數(shù)的定義域上 的任意,當(dāng)且僅當(dāng)時(shí)等號(hào)成立。當(dāng)命題p為真時(shí),;而命題q為真時(shí):指數(shù)函數(shù).因?yàn)椤皃或q”為真,“p且q”為假,所以

當(dāng)命題p為真,命題q為假時(shí),

當(dāng)命題p為假,命題q為真時(shí),,

所以

 

查看答案和解析>>

已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè),若對(duì)任意,,不等式 恒成立,求實(shí)數(shù)的取值范圍.

【解析】第一問利用的定義域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是

第二問中,若對(duì)任意不等式恒成立,問題等價(jià)于只需研究最值即可。

解: (I)的定義域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是     ........4分

(II)若對(duì)任意不等式恒成立,

問題等價(jià)于,                   .........5分

由(I)可知,在上,x=1是函數(shù)極小值點(diǎn),這個(gè)極小值是唯一的極值點(diǎn),

故也是最小值點(diǎn),所以;            ............6分

當(dāng)b<1時(shí),;

當(dāng)時(shí),;

當(dāng)b>2時(shí),;             ............8分

問題等價(jià)于 ........11分

解得b<1 或 或    即,所以實(shí)數(shù)b的取值范圍是 

 

查看答案和解析>>


同步練習(xí)冊(cè)答案