題目列表(包括答案和解析)
(本小題滿分14分)
在△OAB的邊OA,OB上分別有一點(diǎn)P,Q,已知:=1:2, :=3:2,連結(jié)AQ,BP,設(shè)它們交于點(diǎn)R,若=a,=b.
(1)用a與 b表示;
(2)過R作RH⊥AB,垂足為H,若| a|=1, | b|=2, a與 b的夾角的取值范圍.
(本小題滿分14分)已知A(8,0),B、C兩點(diǎn)分別在y軸和x軸上運(yùn)動,并且滿足。
(1)求動點(diǎn)P的軌跡方程。
(2)若過點(diǎn)A的直線L與動點(diǎn)P的軌跡交于M、N兩點(diǎn),且
其中Q(-1,0),求直線L的方程.
(本小題滿分14分)
已知函數(shù),a>0,w.w.w.k.s.5.u.c.o.m
(Ⅰ)討論的單調(diào)性;
(Ⅱ)設(shè)a=3,求在區(qū)間{1,}上值域。期中e=2.71828…是自然對數(shù)的底數(shù)。
(本小題滿分14分)
已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=其中λ為實(shí)數(shù),n為正整數(shù)。
(Ⅰ)對任意實(shí)數(shù)λ,證明數(shù)列{an}不是等比數(shù)列;
(Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;
(Ⅲ)設(shè)0<a<b,Sn為數(shù)列{bn}的前n項(xiàng)和。是否存在實(shí)數(shù)λ,使得對任意正整數(shù)n,都有
a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由。
(本小題滿分14分)
如圖(1),是等腰直角三角形,,、分別為、的中點(diǎn),將沿折起, 使在平面上的射影恰為的中點(diǎn),得到圖(2).
(Ⅰ)求證:;
(Ⅱ)求三棱錐的體積.
一、選擇題:本題考查基礎(chǔ)知識和基本運(yùn)算. 每題5分,滿分60分.
1.D 2。C 3.C 4.A 5.B 6.D
7.A 8.B 9.A 10.C 11.B 12.A
二、填空題:本題考查基礎(chǔ)知識和基本運(yùn)算. 每題4分,滿分16分.
13.15 14.4 15 . 16
三、解答題:本題共6大題,共74分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
17.本題主要考查三角函數(shù)性質(zhì)、三角恒等變換等基本知識,考查推理和運(yùn)算能力.
解:( I )
(Ⅱ)
18.本題主要考查簡單隨機(jī)抽樣,用古典概型計(jì)算事件發(fā)生的概率等基礎(chǔ)知識,考查研究基本事件的能力,以及應(yīng)用意識。
解:(I)設(shè)紅色球有個(gè),依題意得 紅色球有4個(gè).
(II)記“甲取出的球的編號比乙的大”為事件A
所有的基本事件有(紅1,白1),(紅l,藍(lán)2),(紅1,藍(lán)3),(白l,紅1),
(白1,藍(lán)2),(白1,藍(lán)3),(藍(lán)2,紅1),(藍(lán)2,自1),(藍(lán)2,藍(lán)3),
(藍(lán)3,紅1),(藍(lán)3,白1),(藍(lán)3,藍(lán)2),共12個(gè)
事件A包含的基本事件有(藍(lán)2,紅1),(藍(lán)2,白1),
(藍(lán)3,藍(lán)2),共5個(gè)
所以,
19.本題主要考查線面平行與垂直關(guān)系,及多面體的體積計(jì)算等基礎(chǔ)知識,考查空間想象能力,邏輯思維能力和運(yùn)算能力.
(I)解:取CD的中點(diǎn)為F,連EF,則EF為的中位線.
EF∥A
又EF 平面A1BC,. EF∥平面A1BC
(II)證:四邊形ABCD為直角梯形且AD∥BC,
AB⊥BC,AD=2,AB=_BC=1.AC=CD= ,
AD2=AC2+CD2 即 為直角三角形 CD⊥AC又四棱 柱ABCD一A1B
CD 底面ABCD AAl⊥CD,又AA1與AC交于點(diǎn)A,
CD⊥平面A1ACCl
由CD⊥平面AlACCl,CD為四棱錐D-A1ACCl的底面 A1ACCl上的高,
又AAl垂直于底面ABCD,四邊形A1ACC1為矩形
四棱錐D―A1ACCI的體積
20.此題主要考查數(shù)列、等差、等比數(shù)列的概念、數(shù)列的遞推公式、數(shù)列前n項(xiàng)和的求法
同時(shí)考查學(xué)生的分析問題與解決問題的能力,邏輯推理能力及運(yùn)算能力.
解:(I)
(Ⅱ)
21.本題主要考查直線方程與性質(zhì)、橢圓方程與性質(zhì)以及直線與曲線的位置關(guān)系等基礎(chǔ)知
識;考查考生數(shù)形結(jié)合思想、運(yùn)算求解能力、推理論證能力。
解:(I)
(Ⅱ)
22.本題主要考查二次函數(shù)及其性質(zhì)、導(dǎo)數(shù)的基本知識,幾何意義及其應(yīng)用,同時(shí)考查考生分類討論思想方法及化規(guī)的能力:
解:(Ⅰ)
(Ⅱ)
(Ⅲ)
①
②
③
方程有兩個(gè)不等的正根,存在兩條滿足條件的切線;
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com