查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)如圖,在直三棱柱ABCA1B1C1中,∠ACB = 90°. AC = BC = a,

    D、E分別為棱AB、BC的中點, M為棱AA1­上的點,二面角MDEA為30°.

   (1)求MA的長;w.w.w.k.s.5.u.c.o.m      

   (2)求點C到平面MDE的距離。

查看答案和解析>>

(本小題滿分12分)某校高2010級數(shù)學培優(yōu)學習小組有男生3人女生2人,這5人站成一排留影。

(1)求其中的甲乙兩人必須相鄰的站法有多少種? w.w.w.k.s.5.u.c.o.m      

(2)求其中的甲乙兩人不相鄰的站法有多少種?

(3)求甲不站最左端且乙不站最右端的站法有多少種 ?

查看答案和解析>>

(本小題滿分12分)

某廠有一面舊墻長14米,現(xiàn)在準備利用這面舊墻建造平面圖形為矩形,面積為126平方米的廠房,工程條件是①建1米新墻費用為a元;②修1米舊墻的費用為元;③拆去1米舊墻,用所得材料建1米新墻的費用為元,經(jīng)過討論有兩種方案: (1)利用舊墻的一段x米(x<14)為矩形廠房一面的邊長;(2)矩形廠房利用舊墻的一面邊長x≥14.問如何利用舊墻,即x為多少米時,建墻費用最省?(1)、(2)兩種方案哪個更好?

 

查看答案和解析>>

(本小題滿分12分)

已知a,b是正常數(shù), ab, x,y(0,+∞).

   (1)求證:,并指出等號成立的條件;w.w.w.k.s.5.u.c.o.m           

   (2)利用(1)的結(jié)論求函數(shù)的最小值,并指出取最小值時相應(yīng)的x 的值.

查看答案和解析>>

(本小題滿分12分)

已知a=(1,2), b=(-2,1),xaby=-kab (kR).

   (1)若t=1,且xy,求k的值;

   (2)若tR ,x?y=5,求證k≥1.

查看答案和解析>>

一、選擇題:本題考查基礎(chǔ)知識和基本運算.  每題5分,滿分60分.

1.D      2。C       3.C       4.A       5.B      6.D 

7.A      8.B       9.A       10.C      11.B     12.A

二、填空題:本題考查基礎(chǔ)知識和基本運算.  每題4分,滿分16分.

13.15  14.4  15 .  16

三、解答題:本題共6大題,共74分.解答應(yīng)寫出文字說明、證明過程或演算步驟.

17.本題主要考查三角函數(shù)性質(zhì)、三角恒等變換等基本知識,考查推理和運算能力.

解:( I )

  

   (Ⅱ)    

 

 

 18.本題主要考查簡單隨機抽樣,用古典概型計算事件發(fā)生的概率等基礎(chǔ)知識,考查研究基本事件的能力,以及應(yīng)用意識。

     解:(I)設(shè)紅色球有個,依題意得 紅色球有4個.

(II)記“甲取出的球的編號比乙的大”為事件A

  所有的基本事件有(紅1,白1),(紅l,藍2),(紅1,藍3),(白l,紅1),

    (白1,藍2),(白1,藍3),(藍2,紅1),(藍2,自1),(藍2,藍3),

(藍3,紅1),(藍3,白1),(藍3,藍2),共12個

事件A包含的基本事件有(藍2,紅1),(藍2,白1),

(藍3,藍2),共5個

所以,

19.本題主要考查線面平行與垂直關(guān)系,及多面體的體積計算等基礎(chǔ)知識,考查空間想象能力,邏輯思維能力和運算能力.

(I)解:取CD的中點為F,連EF,則EF為的中位線. EF∥A1C

 又EF 平面A1BC,. EF∥平面A1BC

(II)證:四邊形ABCD為直角梯形且AD∥BC,

AB⊥BC,AD=2,AB=_BC=1.AC=CD= ,

AD2=AC2+CD2 為直角三角形  CD⊥AC又四棱   柱ABCD一A1B1C1D1的側(cè)棱  AAl垂直予底面ABCD,

CD 底面ABCD AAl⊥CD,又AA1與AC交于點A,

CD⊥平面A1ACCl    

  由CD⊥平面AlACCl,CD為四棱錐D-A1ACCl的底面    A1ACCl上的高,

  又AAl垂直于底面ABCD,四邊形A1ACC1為矩形

  四棱錐D―A1ACCI的體積

20.此題主要考查數(shù)列、等差、等比數(shù)列的概念、數(shù)列的遞推公式、數(shù)列前n項和的求法

  同時考查學生的分析問題與解決問題的能力,邏輯推理能力及運算能力.

解:(I)

    

(Ⅱ)

21.本題主要考查直線方程與性質(zhì)、橢圓方程與性質(zhì)以及直線與曲線的位置關(guān)系等基礎(chǔ)知

  識;考查考生數(shù)形結(jié)合思想、運算求解能力、推理論證能力。

 

解:(I)

        

     

(Ⅱ)

 

22.本題主要考查二次函數(shù)及其性質(zhì)、導數(shù)的基本知識,幾何意義及其應(yīng)用,同時考查考生分類討論思想方法及化規(guī)的能力:

 

 解:(Ⅰ)

         

(Ⅱ)

 (Ⅲ)

 

 ①

    

③ 

  

方程有兩個不等的正根,存在兩條滿足條件的切線;

  

 

 

 


同步練習冊答案