1.用直徑0.5毫米黑色墨水簽字筆直接答在試卷中. 查看更多

 

題目列表(包括答案和解析)

(2013•成都一模)某工廠在政府的幫扶下,準備轉(zhuǎn)型生產(chǎn)一種特殊機器,生產(chǎn)需要投入固定成本500萬 元,年生產(chǎn)與銷售均以百臺計數(shù),且每生產(chǎn)100臺,還需增加可變成本1000萬元.若市場對 該產(chǎn)品的年需求量為500臺,每生產(chǎn)m百臺的實際銷售收人近似滿足函數(shù)R(m)=5000m-500m2(0≤m≤5,m∈N)
(I)試寫出第一年的銷售利潤y(萬元)關(guān)于年產(chǎn)量單位x百臺,x≤5,x∈N*)的函數(shù)關(guān)系式;
(II)若工廠第一年預計生產(chǎn)機器300臺,銷售后將分到甲、乙、丙三個地區(qū)各100臺,因技術(shù)、運輸?shù)仍,估計每個地區(qū)的機器中出現(xiàn)故障的概率為
15
.出現(xiàn)故障后,需要廠家上門調(diào)試,每個地區(qū)調(diào)試完畢,廠家需要額外開支100萬元.記廠家上門調(diào)試需要額外開支的費 用為隨機變量ξ,試求第一年廠家估計的利潤.
(說明:銷售利潤=實際銷售收入一成本;估計利潤=銷售利潤一ξ的數(shù)學期望)

查看答案和解析>>

(2013•成都一模)某工廠在政府的幫扶下,準備轉(zhuǎn)型生產(chǎn)一種特殊機器,生產(chǎn)需要投入固定成本500萬 元,生產(chǎn)與銷售均以百臺計數(shù),且每生產(chǎn)100臺,還需增加可變成本1000萬元.若市場對該 產(chǎn)品的年需求量為500臺,每生產(chǎn)m百臺的實際銷售收入近似滿足函數(shù)R(m)=5000m-500m2(0≤m≤5,m∈N)
(I)試寫出第一年的銷售利潤y(萬元)關(guān)于年產(chǎn)量x單位:百臺,x≤5,x∈N*)的函數(shù)關(guān)系式;
(說明:銷售利潤=實際銷售收人一成本)
(II )因技術(shù)等原因,第一年的年生產(chǎn)量不能超過300臺,若第一年人員的年支出費用u(x)(萬元)與年產(chǎn)量x(百臺)的關(guān)系滿足u(x)=500x+500(x≤3,x∈N*,問年產(chǎn)量X為多少百臺時,工廠所得純利潤最大?

查看答案和解析>>

已知函數(shù)是(,)上的偶函數(shù),且,在[0,5]上有且只有,則在[-2012,2012]上的零點個數(shù)為(     )

A.804           B.805           C.806            D.808

 

查看答案和解析>>

某工廠在政府的幫扶下,準備轉(zhuǎn)型生產(chǎn)一種特殊機器,生產(chǎn)需要投入固定成本500萬 元,生產(chǎn)與銷售均以百臺計數(shù),且每生產(chǎn)100臺,還需增加可變成本1000萬元.若市場對該 產(chǎn)品的年需求量為500臺,每生產(chǎn)m百臺的實際銷售收入近似滿足函數(shù)R(m)=5000m-500m2(0≤m≤5,m∈N)
(I)試寫出第一年的銷售利潤y(萬元)關(guān)于年產(chǎn)量x單位:百臺,x≤5,x∈N*)的函數(shù)關(guān)系式;
(說明:銷售利潤=實際銷售收人一成本)
(II )因技術(shù)等原因,第一年的年生產(chǎn)量不能超過300臺,若第一年人員的年支出費用u(x)(萬元)與年產(chǎn)量x(百臺)的關(guān)系滿足u(x)=500x+500(x≤3,x∈N*,問年產(chǎn)量X為多少百臺時,工廠所得純利潤最大?

查看答案和解析>>

某工廠在政府的幫扶下,準備轉(zhuǎn)型生產(chǎn)一種特殊機器,生產(chǎn)需要投入固定成本500萬 元,生產(chǎn)與銷售均以百臺計數(shù),且每生產(chǎn)100臺,還需增加可變成本1000萬元.若市場對該 產(chǎn)品的年需求量為500臺,每生產(chǎn)m百臺的實際銷售收入近似滿足函數(shù)R(m)=5000m-500m2(0≤m≤5,m∈N)
(I)試寫出第一年的銷售利潤y(萬元)關(guān)于年產(chǎn)量x單位:百臺,x≤5,x∈N*)的函數(shù)關(guān)系式;
(說明:銷售利潤=實際銷售收人一成本)
(II )因技術(shù)等原因,第一年的年生產(chǎn)量不能超過300臺,若第一年人員的年支出費用u(x)(萬元)與年產(chǎn)量x(百臺)的關(guān)系滿足u(x)=500x+500(x≤3,x∈N*,問年產(chǎn)量X為多少百臺時,工廠所得純利潤最大?

查看答案和解析>>

 一、選擇題

 

 

 

二.填空題

(13)         (14)10;         (15)180;           (16)① ③④

 三.解答題

(17)(本小題滿分10分)

解 :

(Ⅰ)

函數(shù) 的單調(diào)增區(qū)間為

(Ⅱ)

 

 

 

 

 (18)(本小題滿分12分)

解:(I)當

 (II)由(I)得

  

     

(19)(本小題滿分12分)

解:依題意,第四項指標抽檢合格的概率為 其它三項指標抽檢合格的概率均為

    

    (I)若食品監(jiān)管部門對其四項質(zhì)量指標依次進行嚴格的檢測,恰好在第三項指標檢測結(jié)束

時,  能確定該食品不能上市的概率等于第一、第二項指標中恰有一項不合格而且第三項指標不合格的概率.

 

 

  (II)該品牌的食品能上市的概率等于四項指標都含格或第一、第二、第三項指標中僅有

一項不合格且第四項指標合格的概率.

 

(20)(本小題滿分12分)

解法1:(I)取A1C1中點D,連結(jié)B1D,CD.

C1C=AlA=AlC, CD⊥AlCl

底面 ABC是邊長為2的正三角形,

AB=BC=2,A1B1=BlCl=2,

B1D⊥AlCl

BlDCD=D,A1C1平面B1CD, A1C1B1C

(II) 面A1ACCl⊥底面ABC,面AlACC1⊥A1BlC1

又B1D⊥AlC1 BID⊥面A1CCl  

過點D作DE⊥A1C,連BlE,則BlE⊥AlC

B1ED為所求二面角的平面角  

 又A1A⊥A1C, C1C⊥A1C,又D是A1C1的中點,

     

  故所求二面角B1一A1C―C1的大小為arctan

解法2:(I)取AC中點O,連結(jié)BO,   ABC是正三角形 BO⊥AC    

又面 A1ACC1⊥底面ABC,BO⊥面A1ACC1 , BO⊥OA1

又AlA=A1C,A1O⊥AC,如圖建立空間直角坐標系O一xyz

(Ⅱ)為平面A1B1C的一個法向量,

 

故二面角B1-A1C-C1的大小為arccos

(21)(本小題滿分12分)  。

  解:(I)曲線 在點( 0,)處的切線與 軸平行  

 

     (II)由c=0,方程 可化為

假沒存在實數(shù)b使得此方程恰有一個實數(shù)根,

  此方程恰有一個實根

②若b>o,則  的變化情況如下

 

 

③若b<o,則  的變化情況如下

 

綜合①②③可得,實數(shù)b的取值范圍是

 

(22)解:, (Ⅰ)由題意設(shè)雙曲線的標準方程為

由已知得

 

 雙曲線G的標準方程為

(Ⅱ)

 

 

化簡整理得,

www.ks5u.com

 


同步練習冊答案