設為正數且.求證:. 查看更多

 

題目列表(包括答案和解析)

一、填空題:本大題共14小題,每小題5分,計70分.

1.      2.       3.     4.      5.68      6. 4      7. 7      8.

9.     10. 若點P在兩漸近線上的射影分別為、,則必為定值

11.②③          12.         13.1        14.

 

二、解答題:本大題共6小題,計90分.

15. 解: (Ⅰ)因為,∴,則…………………………………………(4分)

  ∴……………………………………………………………………………(7分)

   (Ⅱ)由,得,∴…………………………………………(9分)

   則 …………………………………………(11分)

由正弦定理,得,∴的面積為………………………(14分)

16. (Ⅰ)解:因為,,且,

所以……………………………………………………………………………………………(4分)

   又,所以四邊形為平行四邊形,則……………………………………(6分)

   而,故點的位置滿足………………………………………………………(7分)

(Ⅱ)證: 因為側面底面,,且,

所以,則…………………………………………………………………(10分)

   又,且,所以 …………(13分)

   而,所以…………………………………………………(14分)

17. 解:(Ⅰ)因為,所以的面積為()………………………(2分)

   設正方形的邊長為,則由,得,

解得,則…………………………………………………………………(6分)

   所以,則 ………………(9分)

   (Ⅱ)因為,所以……………(13分)

   當且僅當時取等號,此時.所以當長為時,有最小值1…………………(15分)

18. 解:(Ⅰ)設圓心,則,解得…………………………………(3分)

則圓的方程為,將點的坐標代入得,故圓的方程為………(5分)

(Ⅱ)設,則,且…………………………(7分)

==,所以的最小值為(可由線性規(guī)劃或三角代換求得)…(10分)

(Ⅲ)由題意知, 直線和直線的斜率存在,且互為相反數,故可設,

,由,得 ………(11分)

  因為點的橫坐標一定是該方程的解,故可得………………………………(13分)

  同理,,所以=

  所以,直線一定平行…………………………………………………………………………(15分)

19. (Ⅰ)解:因為…………………………………(2分)

;由,所以上遞增,

上遞減 …………………………………………………………………………………………(4分)

上為單調函數,則………………………………………………………(5分)

(Ⅱ)證:因為上遞增,在上遞減,所以處取得極小值(7分)

 又,所以上的最小值為 …………………………………(9分)

 從而當時,,即…………………………………………………………(10分)

(Ⅲ)證:因為,所以即為,

   令,從而問題轉化為證明方程=0

上有解,并討論解的個數……………………………………………………………………(12分)

   因為,,所以

   ①當時,,所以上有解,且只有一解 ……(13分)

②當時,,但由于,

所以上有解,且有兩解 …………………………………………………………(14分)

③當時,,所以上有且只有一解;

時,,

所以上也有且只有一解…………………………………………………………(15分)

綜上所述, 對于任意的,總存在,滿足,

且當時,有唯一的適合題意;當時,有兩個適合題意…………(16分)

(說明:第(Ⅱ)題也可以令,,然后分情況證明在其值域內,并討論直線與函數的圖象的交點個數即可得到相應的的個數)

20.(Ⅰ)解:由題意得,,所以=……………………(4分)

(Ⅱ)證:令,,則=1………………………………………………(5分)

所以=(1),=(2),

(2)―(1),得=,

化簡得(3)……………………………………………………………(7分)

(4),(4)―(3)得 …………(9分)

在(3)中令,得,從而為等差數列 …………………………………………(10分)

(Ⅲ)記,公差為,則=…………………(12分)

,

…………………………………………(14分)

,當且僅當,即時等號成立……………(16分)

 

 

數學附加題部分

21.A.(幾何證明選講選做題)

解:因為PB=PD+BD=1+8=9,=PD?BD=9,PA=3,AE=PA=3,連結AD,在中,得……(5分)

,所以 …………………………………………………………………(10分)

B.(矩陣與變換選做題)

解: (Ⅰ)設,則有=,=,

所以,解得 …………………………………………………………(4分)

所以M=,從而= ………………………………………………………………(7分)

(Ⅱ)因為且m:2,

所以2(x+2y)-(3x+4y)=4,即x+4 =0,這就是直線l的方程 ………………………………………(10分)

C.(坐標系與參數方程選做題)

解:將極坐標方程轉化為普通方程:……………………………………………(2分)

   可化為…………………………………………………………(5分)

上任取一點A,則點A到直線的距離為

,它的最大值為4 ……………………………(10分)

D.(不等式選講選做題)

證:左=…(5分)

  ……………………(10分)

22.解:以OA、OB所在直線分別x軸,y軸,以過O且垂直平面ABCD的直線為z軸,建立空間直角坐標系,則,…(2分)

(Ⅰ)設平面PDB的法向量為,

  由,

   所以=…………………………………………………(5分)

  (Ⅱ)設平面ABP的法向量,

   ,,

   ,而所求的二面角與互補,

所以二面角A―PB―D的余弦值為…………………………………………………………………(10分)

23.解:(Ⅰ)設袋中原有n個白球,由題意知:,所以=12,

解得n=4(舍去),即袋中原有4個白球……………………………………………………………(3分)

(Ⅱ)由題意,的可能取值為1,2,3,4………………………………………………………………(4分)

,

所以,取球次數的分布列為:

1

2

3

4

P

………(6分)

    …………………………………………………………………………………………………(8分)

(Ⅲ)因為甲先取,所以甲只有可能在第1次和第3次取球,記“甲取到白球”的事件為A,

或 “=3”),所以………………………(10分)

 

 

 


同步練習冊答案