則的展開式共有 項. 查看更多

 

題目列表(包括答案和解析)

已知二項式展開式中的項數(shù)共有九項,則常數(shù)項為          。

查看答案和解析>>

已知二項式展開式中的項數(shù)共有九項,則常數(shù)項為         

查看答案和解析>>

(09年豐臺區(qū)二模理)已知

,則的展開式共有       項。

查看答案和解析>>

以下命題正確的是(    )。
①把函數(shù)的圖象向右平移個單位,得到y(tǒng)=3sin2x的圖象;
的展開式中沒有常數(shù)項;
③已知隨機變量ξ~N(2,4),若P(ξ>a)=P(ξ<b),則a+b=2;
④若等差數(shù)列{an}前n項和為Sn,則三點共線;

查看答案和解析>>

考試結(jié)束,請將本試題卷和答題卡一并上交。

一、選擇題(本大題共10小題,每小題5分,共50分.在每小題給出的四個選項中,只有一項是符合題目要求的)

1.設(shè)全集,集合,則圖中的陰影部分表示的集合為

A.                  B.

C.                 D.

2.已知非零向量滿足,那么向量與向量的夾角為

A.    B.    C.    D.

3.的展開式中第三項的系數(shù)是

       A.               B.               C.15              D.

4.圓與直線相切于點,則直線的方程為

A.   B.   C.  D.

查看答案和解析>>

 

1―5AACBB    6―8DCB

二、填空題:本大題共6個小題,每小題5分,共30分。

9.                10.                   11.6

12.         13.①和③  或①和④             14.

三、解答題:本大題共6個小題,共80分。

15.解(I)該燈泡的使用壽命不足1500小時的概率 ……6分

   (II)至多有2只燈泡使用壽命不足1500小時的概率……12分

答:從這1000只燈泡中任選1只燈泡使用壽命不足1500小時的概率等于

   從這1000只燈泡中任選3只,至多有2只燈泡使用壽命不足1500小時的概率等于。                                                  ……13分

16.(本小題共13分)

解:(I)由已知得          ……5分

    又在銳角△ABC中,所以A=60°,[不說明是銳角△ABC中,扣1分]……7分

   (II)因為a=2,A=60°所以  ……9分

    而                         ……11分

    又                        ……13分

    所以△ABC面積S的最大值等于

 

 

17.(本小題共13分)

解:(I)               ……3分

    由圖知        ……5分

   (II)

                          ……6分

當(dāng)

故函數(shù)F(x)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間  ……8分

當(dāng)故函數(shù)F(x)的單調(diào)增區(qū)間是……10分

當(dāng)a=0時,故函數(shù)F(x)的單調(diào)增區(qū)間是……12分

綜上所述:

當(dāng)函數(shù)F(x)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是

當(dāng)時,函數(shù)F(x)的單調(diào)增區(qū)間是。              ……13分

18.(本小題共14分)

解:(I)在平面A’FA內(nèi)過點 A’作A’H⊥垂足為H

    因為    ……4分

    所以               ……6分

    即點A′在平面ABC上的射影在線段AF上         ……7分

  (II)由(I)知,又A′E……9分

 

 

   則點H為正

   因為……11分

,所以二面角的大小為……13分

二面角的大小即為當(dāng)所旋轉(zhuǎn)過的角的大小。

故所求角等于                                          ……14分

19.(本小題共14分)

    解:(I)由已知……2分

     ……5分

所以當(dāng)有最小值為-7;

     當(dāng)有最大值為1。                        ……7分

   (II)設(shè)點  直線AB方程:

         ……※

……9分

因為為鈍角,

所以    ……12分

解得,此時滿足方程※有兩個不等的實根……14分

故直線l的斜率k的取值范圍  

 

20.(本小題共14分)

解:(I)因為數(shù)列是等差數(shù)列,公差為2

   

    (II)又

,與已知矛盾,所以3

當(dāng)時,  所以=4  ……8分

    (III)由已知當(dāng)=4時,

所以數(shù)列{an}的前n項和

   

……14分

 

 


同步練習(xí)冊答案