(1)若在區(qū)間上為減函數(shù).求實(shí)數(shù)的取值范圍. 查看更多

 

題目列表(包括答案和解析)

 已知

(1)若在區(qū)間上為減函數(shù),求實(shí)數(shù)的取值范圍;

(2)試討論內(nèi)的極值點(diǎn)的個(gè)數(shù)。

 

 

 

 

 

 

 

 

 

查看答案和解析>>

函數(shù)y=f(x)在區(qū)間(0,+∞)內(nèi)可導(dǎo).導(dǎo)函數(shù)f(x)是減函數(shù),且f(x)>0,x0∈(0,+∞).g(x)=kx+m是y=f(x)在點(diǎn)(x0,f(x0))處的切線方程.
(1)用x0,f(x0),f(x0)表示m;
(2)證明:當(dāng)x∈(0,+∞)時(shí),g(x)≥f(x);
(3)若關(guān)于x的不等式x2+1≥ax+b≥
3
2
x
2
3
在(0,+∞)上恒成立,其中a,b為實(shí)數(shù),求b的取值范圍及a,b所滿足的關(guān)系.

查看答案和解析>>

函數(shù)y=f(x)在區(qū)間(0,+∞)內(nèi)可導(dǎo),導(dǎo)函數(shù)f′(x)是減函數(shù),且f′(x)>0,設(shè)x0∈(0,+∞),y=kx+m是曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程,并設(shè)函數(shù)g(x)=kx+m.

(1)用x0、f(x0)、f′(x0)表示m;

(2)證明當(dāng)x0∈(0,+∞)時(shí),g(x)≥f(x);

(3)若關(guān)于x的不等式x2+1≥ax+b上恒成立,其中a、b為實(shí)數(shù),求b的取值范圍及a與b 所滿足的關(guān)系.

查看答案和解析>>

函數(shù)y=f(x)在區(qū)間(0,+∞)內(nèi)可導(dǎo).導(dǎo)函數(shù)f(x)是減函數(shù),且f(x)>0,x0∈(0,+∞).g(x)=kx+m是y=f(x)在點(diǎn)(x0,f(x0))處的切線方程.
(1)用x0,f(x0),f(x0)表示m;
(2)證明:當(dāng)x∈(0,+∞)時(shí),g(x)≥f(x);
(3)若關(guān)于x的不等式數(shù)學(xué)公式在(0,+∞)上恒成立,其中a,b為實(shí)數(shù),求b的取值范圍及a,b所滿足的關(guān)系.

查看答案和解析>>

函數(shù)y=f(x)在區(qū)間(0,+∞)內(nèi)可導(dǎo),導(dǎo)函數(shù)f'(x)是減函數(shù),且f′(x)>0。設(shè)x0∈(0,+∞),y=kx+m是曲線y=f(x)在點(diǎn)(x0,f(x0))的切線方程,并設(shè)函數(shù)g(x)=kx+m。
(1)用x0、f(x0)、f′(x0)表示m;
(2)證明:當(dāng)x0∈(0,+∞)時(shí),g(x)≥f(x);
(3)若關(guān)于x的不等式x2+1≥ax+b≥上恒成立,其中a、b為實(shí)數(shù),求b的取值范圍及a與b所滿足的關(guān)系。

查看答案和解析>>


同步練習(xí)冊答案