(1)求數(shù)列的通項,(2)求這個數(shù)列的項數(shù).抽取的是第幾項? 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)數(shù)列{an}的前W項和為Sn,且Sn=
n2+3n
2
{an}數(shù)列{cn},滿足cn=
an,n為奇數(shù)
2n ,n為偶數(shù)
,
(I)求數(shù)列{an}的通項公式,并求數(shù)列{cn}的前n項和{Tn};
(II)張三同學(xué)利用第(I)問中的Tn設(shè)計了一個程序框圖(如圖),但李四同學(xué)認(rèn)為這個程序如果被執(zhí)行將會是一個“死循環(huán)”(即程序會永遠(yuǎn)循環(huán)下去,而無法結(jié)束).你是否同意李四同學(xué)的觀點(diǎn)?請說明理由.

查看答案和解析>>

數(shù)列{an}是公比大于1的等比數(shù)列,a2=6,S3=26.
(1)求數(shù)列{an}的通項公式;
(2)在an與an+1之間插入n個數(shù),使這n+2個數(shù)組成公差為dn的等差數(shù)列.設(shè)第n個等差數(shù)列的前n項和是An.求關(guān)于n的多項式g(n),使得An=g(n)dn對任意n∈N+恒成立;
(3)對于(2)中的數(shù)列d1,d2,d3,…,dn,…,這個數(shù)列中是否存在不同的三項dm,dk,dp(其中正整數(shù)m,k,p成等差數(shù)列)成等比數(shù)列?若存在,求出這樣的三項;若不存在,說明理由.

查看答案和解析>>

數(shù)列{an}的前n項和為Sn,已知Sn=
n2+3n
2

(1)求數(shù)列{an}的通項公式;
(2)若bn=bn=
an(n為奇數(shù))
2n(n為偶數(shù))
,數(shù)列{bn}的前n項和為Tn,求Tn;
(3)某學(xué)生利用第(2)題中的Tn設(shè)計了一個程序框圖如圖所示,但數(shù)學(xué)老師判斷這個程序是一個“死循環(huán)”(即程序會永遠(yuǎn)循環(huán)下去,而無法結(jié)束).你是否同意老師的觀點(diǎn)?請說明理由.

查看答案和解析>>

數(shù)列{an}的前n項和為Sn,已知Sn=
n2+3n
2

(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{cn}滿足cn=
an,n為奇數(shù)
2n,n為偶數(shù)
,求數(shù)列{cn}的前n項和為Tn
(3)張三同學(xué)利用第(2)題中的Tn設(shè)計了一個程序流程圖,但李四同學(xué)認(rèn)為這個程序如果被執(zhí)行會是一個“死循環(huán)”(即程序會永遠(yuǎn)循環(huán)下去,而無法束).你是否同意李四同學(xué)的觀點(diǎn)?請說明理由.

查看答案和解析>>

設(shè)數(shù)列的前項和為,且滿足.

(1)求數(shù)列的通項公式;

(2)在數(shù)列的每兩項之間按照如下規(guī)則插入一些數(shù)后,構(gòu)成新數(shù)列:兩項之間插入個數(shù),使這個數(shù)構(gòu)成等差數(shù)列,其公差為,求數(shù)列的前項和為.

 

查看答案和解析>>

1-12  BDBDA    BABCABD

13.?2

14.2n1-n-2

15.7

16.90

17.(1)∵.

(2)證明:由已知,

,

.

18.(1)由,當(dāng)時,,顯然滿足,

∴數(shù)列是公差為4的遞增等差數(shù)列.

(2)設(shè)抽取的是第項,則.

,

,∴,

.

故數(shù)列共有39項,抽取的是第20項.

19.。

①+②得

,

20.(1)由條件得: .

(2)假設(shè)存在使成立,則    對一切正整數(shù)恒成立.

, 既.

故存在常數(shù)使得對于時,都有恒成立.

21.(1)第1年投入800萬元,第2年投入800×(1-)萬元……,

n年投入800×(1-n1萬元,

所以總投入an=800+800(1-)+……+800×(1-n1=4000[1-(n

同理:第1年收入400萬元,第2年收入400×(1+)萬元,……,

n年收入400×(1+n1萬元

bn=400+400×(1+)+……+400×(1+n1=1600×[(n-1]

(2)∴bnan>0,1600[(n-1]-4000×[1-(n]>0

化簡得,5×(n+2×(n-7>0

設(shè)x=(n,5x2-7x+2>0

x,x>1(舍),即(nn≥5.

22.(文)

(1)當(dāng)時,

,即 ,

.

(1)

(2)

由(1)得

當(dāng)

成立

故所得數(shù)列不符合題意.

當(dāng)

.

綜上,共有3個滿足條件的無窮等差數(shù)列:

①{an} : an=0,即0,0,0,…;

②{an} : an=1,即1,1,1,…;

③{an} : an=2n-1,即1,3,5,…,

(理)

(1)由已知得:,

,

,

.

(2)由,∴,

,  ∴是等比數(shù)列.

,∴ ,

,

 ,當(dāng)時,

. ,

.


同步練習(xí)冊答案