解得=2 3分 查看更多

 

題目列表(包括答案和解析)

解:因為有負根,所以在y軸左側有交點,因此

解:因為函數(shù)沒有零點,所以方程無根,則函數(shù)y=x+|x-c|與y=2沒有交點,由圖可知c>2


 13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點

(2)因為f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)

數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個位置上則稱有一個巧合,求巧合數(shù)的分布列。

查看答案和解析>>

16.(2)解(1)當a=1,b=-2時,g(x)=f(x)-2,把f(x)圖象向下平移兩個單位就可得到g(x)圖象,

這時函數(shù)g(x)只有兩個零點,所以(1)不對

(2)若a=-1,-2<b<0,則把函數(shù)f(x)作關于x軸對稱圖象,然后向下平移不超過2個單位就可得到g(x)圖象,這時g(x)有超過2的零點

(3)當a<0時, y=af(x)根據(jù)定義可斷定是奇函數(shù),如果b≠0,把奇函數(shù)y=af(x)圖象再向上(或向下)平移后才是y=g(x)=af(x)+b的圖象,那么肯定不會再關于原點對稱了,肯定不是奇函數(shù);當b=0時才是奇函數(shù),所以(3)不對。所以正確的只有(2)

一盒中放有大小相同的紅色、綠色、黃色三種小球,已知紅球個數(shù)是綠球個數(shù)的兩倍,黃球個數(shù)是綠球個數(shù)的一半,現(xiàn)在從該盒中隨機取出一球,若取出紅球得1分,取出黃球得0分,取出綠球得-1分,試寫出從該盒中取出一球所得分數(shù)Y的分布列.

查看答案和解析>>

分組 頻數(shù) 頻率
(3.9,4.2] 4 0.08
(4.2,4.5] 5 0.10
(4.5,4.8] 25 m
(4.8,5.1] x y
(5.1,5.4] 6 0.12
合計 n 1.00
為了解我市高三學生的視力狀況,綿陽市某醫(yī)療衛(wèi)生機構于2011年9月對某校高三學生進行了一次隨機抽樣調查.已知該校高三的男女生人數(shù)的比例為4:1,調查時根據(jù)性別采用分層抽樣的方式隨機抽取了一部分學生作為樣本.現(xiàn)將調查結果分組,分組區(qū)間為(3.9,4.2],(4.2,4.5],…(5.1,5.4].經(jīng)過數(shù)據(jù)處理,得到如頻率分布表:
(1)求頻率分布表中未知量x,y,m,n的值;
(2)從樣本中視力在(4.2,4.5]和(5.1,5.4]的所有同學中隨機抽取兩人,求兩人的視力差的絕對值低于0.5的概率;
(3)若該校某位高三女生被抽進本次調查的樣本的概率為
1
13
,請你根據(jù)本次抽樣調查的結果估計該校高三學生中視力高于4.8的人數(shù).

查看答案和解析>>

分組頻數(shù)頻率
(3.9,4.2]40.08
(4.2,4.5]50.10
(4.5,4.8]25m
(4.8,5.1]xy
(5.1,5.4]60.12
合計n1.00
為了解我市高三學生的視力狀況,綿陽市某醫(yī)療衛(wèi)生機構于2011年9月對某校高三學生進行了一次隨機抽樣調查.已知該校高三的男女生人數(shù)的比例為4:1,調查時根據(jù)性別采用分層抽樣的方式隨機抽取了一部分學生作為樣本.現(xiàn)將調查結果分組,分組區(qū)間為(3.9,4.2],(4.2,4.5],…(5.1,5.4].經(jīng)過數(shù)據(jù)處理,得到如頻率分布表:
(1)求頻率分布表中未知量x,y,m,n的值;
(2)從樣本中視力在(4.2,4.5]和(5.1,5.4]的所有同學中隨機抽取兩人,求兩人的視力差的絕對值低于0.5的概率;
(3)若該校某位高三女生被抽進本次調查的樣本的概率為,請你根據(jù)本次抽樣調查的結果估計該校高三學生中視力高于4.8的人數(shù).

查看答案和解析>>

解析 第二列等式的右端分別是1×1,3×3,6×6,10×10,15×15,∵1,3,6,10,15,…第nan與第n-1項an-1(n≥2)的差為:anan-1n,∴a2a1=2,a3a2=3,a4a3=4,…,anan-1n,各式相加得,

ana1+2+3+…+n,其中a1=1,∴an=1+2+3+…+n,即an,∴an2(n+1)2.

答案 n2(n+1)2

查看答案和解析>>


同步練習冊答案