22. 查看更多

 

題目列表(包括答案和解析)

(本小題滿(mǎn)分14分)

已知函數(shù)。

(1)證明:

(2)若數(shù)列的通項(xiàng)公式為,求數(shù)列 的前項(xiàng)和;w.w.w.k.s.5.u.c.o.m    

(3)設(shè)數(shù)列滿(mǎn)足:,設(shè),

若(2)中的滿(mǎn)足對(duì)任意不小于2的正整數(shù),恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿(mǎn)分14分)已知,點(diǎn)軸上,點(diǎn)軸的正半軸,點(diǎn)在直線(xiàn)上,且滿(mǎn)足. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當(dāng)點(diǎn)軸上移動(dòng)時(shí),求動(dòng)點(diǎn)的軌跡方程;

(Ⅱ)過(guò)的直線(xiàn)與軌跡交于兩點(diǎn),又過(guò)作軌跡的切線(xiàn)、,當(dāng),求直線(xiàn)的方程.

查看答案和解析>>

(本小題滿(mǎn)分14分)設(shè)函數(shù)

 (1)求函數(shù)的單調(diào)區(qū)間;

 (2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關(guān)于的方程在區(qū)間上恰好有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

(本小題滿(mǎn)分14分)

已知,其中是自然常數(shù),

(1)討論時(shí), 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,;

(3)是否存在實(shí)數(shù),使的最小值是3,若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

(本小題滿(mǎn)分14分)

設(shè)數(shù)列的前項(xiàng)和為,對(duì)任意的正整數(shù),都有成立,記。

(I)求數(shù)列的通項(xiàng)公式;

(II)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對(duì)任意正整數(shù)都有;

(III)設(shè)數(shù)列的前項(xiàng)和為。已知正實(shí)數(shù)滿(mǎn)足:對(duì)任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

一、選擇題:

1―5:ACCCB  6―10:CDACD   11―12:BC  

二、填空題:

13.2  14.   15.5   16.①   ②球的體積函數(shù)的導(dǎo)數(shù)等于球的表面積函數(shù)

三、解答題:

17.(本小題滿(mǎn)分12分)

解:(I)……………………2分

……………………4分

       ……………………………………………………………………5分

   (II)B均為銳角且B<A

    又C為鈍角

    ∴最短邊為b……………………………………………………7分

    由,解得………………………………9分

    又…………………………12分

18.(本小題滿(mǎn)分12分)

       解:(I)

………………………………3分

…………………………………………………4分

   (II)令.

    若時(shí),當(dāng)時(shí),函數(shù)

    …………………………………………………………6分

    若時(shí),當(dāng)時(shí),函數(shù)

    …………………………………………………………8分

   (III)由

    確定單調(diào)遞增的正值區(qū)間是

    由

    確定單調(diào)遞減的正值區(qū)間是;………10分

    綜上,當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為.

    當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為.……12分

       注:①

     的這些

等價(jià)形式中,以最好用. 因?yàn)閺?fù)合函數(shù)

的中間變量是增函數(shù),對(duì)求的單調(diào)區(qū)間來(lái)說(shuō),

只看外層函數(shù)的單調(diào)性即可.否則,利用的其它形

式,例如求單調(diào)區(qū)間是非常容易出錯(cuò)的. 同學(xué)們可以嘗試做一

的其它形式,認(rèn)真體會(huì),比較優(yōu)劣!

       ②今后遇到求類(lèi)似的單調(diào)區(qū)間問(wèn)題,應(yīng)首先通過(guò)誘導(dǎo)公式將轉(zhuǎn)化為標(biāo)準(zhǔn)形

式:(其中A>0,ω>0),然后再行求

解,保險(xiǎn)系數(shù)就大了.

19.(本小題滿(mǎn)分12分)

       解:(I)由已知……………………1分

    …………3分

由已知

∴公差d=1…………………………………………………………4分

……………………………………………………6分

   (II)設(shè)…………………………7分

    當(dāng)時(shí),k的增函數(shù),也是k的增函數(shù).

    ………………………………10分

    又

    *不存在,使…………………………………12分

20.(本小題滿(mǎn)分12分)

解:恒成立

只需小于的最小值…………………………………………2分

而當(dāng)時(shí),≥3……………………………………………4分

……………………………………………………6分

存在極大值與極小值

有兩個(gè)不等的實(shí)根…………………………8分

…………………………………………………………10分

要使“PQ”為真,只需

故m的取值范圍為[2,6].…………………………………………………12分

21.(本小題滿(mǎn)分12分)

解:設(shè)此工廠(chǎng)應(yīng)分別生產(chǎn)甲、乙兩種產(chǎn)品x噸、y噸,獲得利潤(rùn)z萬(wàn)元………1分

       依題意可得約束條件:

        <td id="wdekp"><ul id="wdekp"><progress id="wdekp"></progress></ul></td>

         

               利潤(rùn)目標(biāo)函數(shù)…………(7分)                            

        如圖,作出可行域,作直線(xiàn),把直線(xiàn)l向右上方平移至l1位置,直線(xiàn)經(jīng)過(guò)可行域上的點(diǎn)M,且與原點(diǎn)距離最大,此時(shí)取最大值.…………10分

               解方程組,得M(20,24)

        故生產(chǎn)甲種產(chǎn)品20t,乙種產(chǎn)品24 t,才能使此工廠(chǎng)獲得最大利潤(rùn).…………12分

        22.(本小題滿(mǎn)分14分)

        解:(Ⅰ)依題意

              =5n-4    ……………………3分

        (Ⅱ)(1)由

        即 

            ……………………6分

        即      

        是以為首項(xiàng),為公差的等差數(shù)列  ………………8分

        (2)由(1)得

            ………………10分

               ①

        ∴2  ②

        ①-②得  

                       =

          ………………14分


        同步練習(xí)冊(cè)答案