(3)證明:對(duì)于數(shù)列.一定存在.使. 2007學(xué)年度四校質(zhì)量調(diào)研 高三數(shù)學(xué)試卷 查看更多

 

題目列表(包括答案和解析)

對(duì)于兩個(gè)定義域相同的函數(shù)f(x),g(x),若存在實(shí)數(shù)m,n使h(x)=mf(x)+ng(x),則稱函數(shù)h(x)是由“基函數(shù)f(x),g(x)”生成的。
(1)若f(x)=x2+3x和g(x)=-3x+4生成一個(gè)偶函數(shù)h(x),求h(2)的值;
(2)若h(x)=2x2+3x-1由函數(shù)f(x)=x2+ax,g(x)=x+b(a,b∈R,且ab≠0)生成,求a+2b的取值范圍;
(3)試?yán)谩盎瘮?shù)f(x)=log4(4x+1),g(x)=x-1生成一個(gè)函數(shù)h(x),使之滿足下列條件:
①是偶函數(shù);②有最小值1;求出函數(shù)h(x)的解析式并進(jìn)一步研究該函數(shù)的單調(diào)性(無需證明)。

查看答案和解析>>

(本小題滿分13分)

對(duì)于定義域分別為的函數(shù),規(guī)定:

函數(shù)

若函數(shù),求函數(shù)的取值集合;

,設(shè)為曲線在點(diǎn)處切線的斜率;而是等差數(shù)列,公差為1,點(diǎn)為直線軸的交點(diǎn),點(diǎn)的坐標(biāo)為。求證:

,其中是常數(shù),且,請(qǐng)問,是否存在一個(gè)定義域?yàn)?sub>的函數(shù)及一個(gè)的值,使得,若存在請(qǐng)寫出一個(gè)的解析式及一個(gè)的值,若不存在請(qǐng)說明理由。

查看答案和解析>>

(本題滿分15分)設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方程有實(shí)數(shù)根;②函數(shù)的導(dǎo)數(shù)滿足

   (I)證明:函數(shù)是集合M中的元素;

   (II)證明:函數(shù)具有下面的性質(zhì):對(duì)于任意,都存在,使得等式成立。 

(III)若集合M中的元素具有下面的性質(zhì):若的定義域?yàn)镈,則對(duì)于任意[m,n],都存在,使得等式成立。試用這一性質(zhì)證明:對(duì)集合M中的任一元素,方程只有一個(gè)實(shí)數(shù)根。

查看答案和解析>>

(本題滿分15分)設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方程有實(shí)數(shù)根;②函數(shù)的導(dǎo)數(shù)滿足
(I)證明:函數(shù)是集合M中的元素;
(II)證明:函數(shù)具有下面的性質(zhì):對(duì)于任意,都存在,使得等式成立。 
(III)若集合M中的元素具有下面的性質(zhì):若的定義域?yàn)镈,則對(duì)于任意[m,n],都存在,使得等式成立。試用這一性質(zhì)證明:對(duì)集合M中的任一元素,方程只有一個(gè)實(shí)數(shù)根。

查看答案和解析>>

解答題:解答應(yīng)寫出文字說明、證明過程或演算步驟。

設(shè)函數(shù)y=f(x)定義域?yàn)镽,當(dāng)x<0時(shí),f(x)>1,且對(duì)于任意的x,y∈R,有f(x+y)=f(x)·f(y)成立數(shù)列(an)滿足a1f(0),且(n∈N*)。

(1)

f(0)的值

(2)

求數(shù)列{an}的通項(xiàng)公式

(3)

是否存在正數(shù)k,使對(duì)一切n∈N*均成立,若存在,求出k的最大值,并證明,否則說明理由。

查看答案和解析>>

一、填空題:

1.   2.    3.    4.    5.    6.   7.    8.2009     9.4個(gè)     10.①②    11. 

二、選擇題:

12.B    13.C    14.D    15.D

三、解答題:

16.解:(Ⅰ)因?yàn)?sub>點(diǎn)的坐標(biāo)為,根據(jù)三角函數(shù)定義可知,  

,,                                                          2分

所以                                                4分

(Ⅱ)因?yàn)槿切?sub>為正三角形,所以,,                                                  5分

所以

                                               7分

所以

。                                        11分

17.方法一:(I)證明:連結(jié)OC,因?yàn)?sub>所以

所以,                                    2分

中,由已知可得

所以所以,

       所以平面。                                    5分

(II)解:取AC的中點(diǎn)M,連結(jié)OM、ME、OE,由E為BC的中點(diǎn)知

所以直線OE與EM所成的銳角就是異面直線AB與CD所成的角,              7分

中,因?yàn)?sub>是直角斜邊AC上的中線,所以所以                          

所以異面直線AB與CD所成角的大小為。                           12分

18.解:(Ⅰ)由年銷售量為件,按利潤的計(jì)算公式,有生產(chǎn)A、B兩產(chǎn)品的年利潤分別為:

         2分

所以                      5分

(Ⅱ)因?yàn)?sub>所以為增函數(shù),

,所以時(shí),生產(chǎn)A產(chǎn)品有最大利潤為(萬美元)                         

,所以時(shí),生產(chǎn)B產(chǎn)品

有最大利潤為460(萬美元)                                            8分

現(xiàn)在我們研究生產(chǎn)哪種產(chǎn)品年利潤最大,為此,我們作差比較:

  10分

所以:當(dāng)時(shí),投資生產(chǎn)A產(chǎn)品200件可獲得最大年利潤;

     當(dāng)時(shí),生產(chǎn)A產(chǎn)品與生產(chǎn)B產(chǎn)品均可獲得最大年利潤;

     當(dāng)時(shí),投資生產(chǎn)B產(chǎn)品100件可獲得最大年利潤。12分

19.解:(1)當(dāng)時(shí), ,成立,所以是偶函數(shù);

                                                                         3分

當(dāng)時(shí),,這時(shí)所以是非奇非偶函數(shù);                                                           6分

(2)當(dāng)時(shí),設(shè),則

                  9分

當(dāng)時(shí),因?yàn)?sub>,所以

所以,

,所以是區(qū)間 的單調(diào)遞減函數(shù)。  14分

20.解:(Ⅰ)由拋物線,設(shè)上,且,所以,得,代入,得,

所以。                                                      4分

上,由已知橢圓的半焦距,于是

消去并整理得  , 解得不合題意,舍去).

故橢圓的方程為。                                      7分

(另法:因?yàn)?sub>上,

所以,所以,以下略。)

(Ⅱ)由,所以點(diǎn)O到直線的距離為

,又

所以,

。                                      10分

下面視提出問題的質(zhì)量而定:

如問題一:當(dāng)面積為時(shí),求直線的方程。()      得2分

問題二:當(dāng)面積取最大值時(shí),求直線的方程。()       得4分

21.解:(1)

2

3

35

100

97

94

3

1

                                                                         4分

(2)由題意知數(shù)列的前34項(xiàng)成首項(xiàng)為100,公差為-3的等差數(shù)列,從第35項(xiàng)開始,奇數(shù)項(xiàng)均為3,偶數(shù)項(xiàng)均為1,                                  6分

從而=                         8分

    =                        10分

(3)證明:①若,則題意成立,                                   12分

②若,此時(shí)數(shù)列的前若干項(xiàng)滿足,即,

設(shè),則當(dāng)時(shí),

從而此時(shí)命題成立;                                                       14分

③若,由題意得,則由②的結(jié)論知此時(shí)命題也成立,

綜上所述,原命題成立。                                                     16分

 

 

 


同步練習(xí)冊(cè)答案