(12)設(shè)函數(shù).區(qū)間M=[a.b].集合N={}. 則使M=N成立的實(shí)數(shù)對(duì)(a.b)有 (A)0個(gè) (B)1個(gè) (C)2個(gè) (D)無數(shù)多個(gè) 第II卷 (13)二次函數(shù)y=ax2+bx+c(x∈R)的部分對(duì)應(yīng)值如下表: x-3-2-101234y60-4-6-6-406 則不等式ax2+bx+c>0的解集是 .為圓心.與直線4x+3y-35=0相切的圓的方程是 . 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)已知函數(shù),

(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;(Ⅱ)設(shè)函數(shù)在區(qū)間內(nèi)是減函數(shù),求的取值范圍.

查看答案和解析>>

(本小題滿分12分)

設(shè)函數(shù),其中

 (1)求出的最小正周期和單調(diào)遞減區(qū)間;

 (2)求在[上最大值與最小值.

 

查看答案和解析>>

(本題12分)設(shè)函數(shù)

  ⑴求的表達(dá)式;

 ⑵求的單調(diào)區(qū)間、極大值、極小值。

 

 

 

 

查看答案和解析>>

(08年全國卷Ⅰ)(本小題滿分12分)

已知函數(shù),

(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè)函數(shù)在區(qū)間內(nèi)是減函數(shù),求的取值范圍.

查看答案和解析>>

( 本小題滿分12分)

設(shè)函數(shù)圖像的一條對(duì)稱軸是直線

(Ⅰ)求;

(Ⅱ)求函數(shù)的單調(diào)區(qū)間及最值;

 

 

查看答案和解析>>

 

一、選擇題:本題考查基本知識(shí)和基本運(yùn)算,每小題5分,滿分60分.

(1)A      (2)B     (3)D     (4)C      (5)A    (6)B

(7)C      (8)A     (9)D     (10)C     (11)B    (12)A

二、填空題:本題考查基本知識(shí)和基本運(yùn)算,每小題4分,滿分16分.

(13)                         (14)

(15)2                                        (16)

三、解答題

(17)本小題主要考查三角函數(shù)的基本公式和三角函數(shù)的恒等變換等基本知識(shí),以及推理能力和運(yùn)算能力.滿分12分.

      解:由已知.

  

      從而 

.

(18)本小題主要考查線面關(guān)系和正方體性質(zhì)等基本知識(shí),考查空間想象能力和推理論證能力.滿分12分.

      解法一:(I)連結(jié)BP.

      ∵AB⊥平面BCC1B1,  ∴AP與平面BCC1B1所成的角就是∠APB,

      ∵CC1=4CP,CC1=4,∴CP=I.

      在Rt△PBC中,∠PCB為直角,BC=4,CP=1,故BP=.

      在Rt△APB中,∠ABP為直角,tan∠APB=

      ∴∠APB=

(19)本小題主要考查簡單線性規(guī)劃的基本知識(shí),以及運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力.滿分12分.

      解:設(shè)投資人分別用x萬元、y萬元投資甲、乙兩個(gè)項(xiàng)目.

      由題意知

      目標(biāo)函數(shù)z=x+0.5y.

      上述不等式組表示的平面區(qū)域如圖所示,陰影部分(含邊界)即可行域.

      與可行域相交,其中有一條直線經(jīng)過可行域上的M點(diǎn),且

      與直線的距離最大,這里M點(diǎn)是直線

      和的交點(diǎn).

       解方程組 得x=4,y=6

      此時(shí)(萬元).

          當(dāng)x=4,y=6時(shí)z取得最大值.

      答:投資人用4萬元投資甲項(xiàng)目、6萬元投資乙項(xiàng)目,才能在確保虧損不超過1.8萬元的前提下,使可能的盈利最大.

(20)本小題主要考查數(shù)列的基本知識(shí),以及運(yùn)用數(shù)學(xué)知識(shí)分析和解決問題的能力.滿分12分.

      解:(I)當(dāng)時(shí),

             

       由,

       即              又.

       (II)設(shè)數(shù)列{an}的公差為d,則在中分別取k=1,2,得

<sub id="wcpei"></sub>
  • (1)

    (2)

           由(1)得

           當(dāng)

           若成立

           若

              故所得數(shù)列不符合題意.

           當(dāng)

           若

           若.

           綜上,共有3個(gè)滿足條件的無窮等差數(shù)列:

           ①{an} : an=0,即0,0,0,…;

           ②{an} : an=1,即1,1,1,…;

           ③{an} : an=2n-1,即1,3,5,…,

    (21)本小題主要考查直線、橢圓和向量等基本知識(shí),以及推理能力和運(yùn)算能力.滿分12分.

           解:(I)設(shè)所求橢圓方程是

           由已知,得    所以.

           故所求的橢圓方程是

           (II)設(shè)Q(),直線

           當(dāng)由定比分點(diǎn)坐標(biāo)公式,得

          

           .

           于是   故直線l的斜率是0,.

    (22)本小題主要考查函數(shù)、不等式等基本知識(shí),以及綜合運(yùn)用數(shù)學(xué)知識(shí)解決問題的能力.滿分14分.

           證明:(I)任取 

           和  ②

           可知 ,

           從而 .  假設(shè)有①式知

          

           ∴不存在

           (II)由                        ③

           可知   ④

           由①式,得   ⑤

           由和②式知,   ⑥

           由⑤、⑥代入④式,得

                              

    (III)由③式可知

      (用②式)

           (用①式)


    同步練習(xí)冊(cè)答案