雙曲線的焦點是F1.F2.點M在雙曲線上且MF1⊥x軸.則到F1直線F2M的距離為: A. B. C. D. 查看更多

 

題目列表(包括答案和解析)

雙曲線數(shù)學公式的左、右焦點分別為F1、F2,O為坐標原點,點A在雙曲線的右支上,點B在雙曲線左準線上,數(shù)學公式
(Ⅰ)求雙曲線的離心率e;
(Ⅱ)若此雙曲線過數(shù)學公式,求雙曲線的方程;
(Ⅲ)在(Ⅱ)的條件下,D1、D2分別是雙曲線的虛軸端點(D2在y軸正半軸上),過D1的直線l交雙曲線于點M、N,數(shù)學公式,求直線l的方程.

查看答案和解析>>

雙曲線的離心率e=2,F(xiàn)1,F(xiàn)2是左,右焦點,過F2作x軸的垂線與雙曲線在第一象限交于P點,直線F1P與右準線交于Q點,已知
(1)求雙曲線的方程;
(2)設(shè)過F1的直線MN分別與左支,右支交于M、N,線段MN的垂線平分線l與x軸交于點G(x,0),若1≤|NF2|<3,求x的取值范圍.

查看答案和解析>>

雙曲線的左、右焦點分別為F1、F2,O為坐標原點,點A在雙曲線的右支上,點B在雙曲線左準線上,
(Ⅰ)求雙曲線的離心率e;
(Ⅱ)若此雙曲線過,求雙曲線的方程;
(Ⅲ)在(Ⅱ)的條件下,D1、D2分別是雙曲線的虛軸端點(D2在y軸正半軸上),過D1的直線l交雙曲線于點M、N,,求直線l的方程.

查看答案和解析>>

雙曲線=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,P為雙曲線上任一點,F(xiàn)2在∠F1PF2的內(nèi)角平分線上的射影為M,則點M的軌跡是以原點為圓心,半徑為a的圓.類比到橢圓中,寫出類似的性質(zhì)并加以證明.

查看答案和解析>>

(14分)設(shè)F1、F2分別為橢圓C: =1(a>b>0)的左、右兩個焦點.

(1)若橢圓C上的點A(1,)到F1、F2兩點的距離之和等于4,寫出橢圓C的方程和焦點坐標;

(2)設(shè)點K是(1)中所得橢圓上的動點,求線段F1K的中點的軌跡方程;

(3)已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點對稱的兩個點,點P是橢圓上任意一點,當直線PM、PN的斜率都存在,并記為kPM、kPN時,那么kPM與kPN之積是與點P位置無關(guān)的定值.試對雙曲線寫出具有類似特性的性質(zhì),并加以證明.

 

查看答案和解析>>

(吉林、黑龍江、廣西)

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

D

A

B

C

C

A

D

A

C

B

C

 

二、填空

13 (x-1)2+(y-2)2=4;      14、- ; 15、 384;16、①②③④

三、解答題:

17、本小題主要考查指數(shù)函數(shù)的性質(zhì)、不等式性質(zhì)和解法,考查分析問題的能力和運算能力

解:∵f (x)=2|x+1|-|x-1|≥2=, 即|x+1|-|x-1|≥.

當x≤ -1時,原不等式化為:-2≥(舍);

當-1<x≤ 1時,原不等式化為:2x≥ ∴x≥.

∴此時,≤ x≤ 1;

當x>1時, 原不等式化為:2≥,

此時,x>1.

故原不等式的解集為:{x|x≥ }.

 

18、本小題主要考查等差數(shù)列、等比數(shù)列的基本知識以及運用這些知識的能力

⑴證明:設(shè){an}中首項為a1,公差為d.

∵lga1,lga2,lga4成等差數(shù)列  ∴2lga2=lga1?lga4   ∴a22=a1?a4.

即(a1+d)2=a1(a1+3d)   ∴d=0或d=a1.

當d=0時, an=a1, bn=, ∴,∴為等比數(shù)列;

當d=a1時, an=na1 ,bn=,∴,∴為等比數(shù)列.

綜上可知為等比數(shù)列.

⑵∵無窮等比數(shù)列{bn }各項的和

∴|q|<1, 由⑴知,q=, d=a1 . bn=

∴, ∴a1=3.

∴.

 

19、本小題考查離散型隨機變量分布列和數(shù)學期望等概念,考查運用概率知識解決實際問題的能力

解:ξ的所有取值為3,4,5

P(ξ=3)=;

P(ξ=4)=;

P(ξ=5)=.

ξ

3

4

5

P

0.28

0.3744

0.3466

∴ξ的分布列為:

 

 

∴Eξ=3×0.28+4×0.3744+5×0.3456=0.84+1.4976+1.728=4.0656.

20、本小題主要考查直線與平面垂直、直線與平面所成角的有關(guān)知識、及思維能力和空間想象能力,考查應(yīng)用向量知識解決數(shù)學問題的能力

解:方法一:

⑴取PA中點G, 連結(jié)FG, DG.

 

.

⑵設(shè)AC, BD交于O,連結(jié)FO.

.

設(shè)BC=a, 則AB=a, ∴PA=a, DG=a=EF, ∴PB=2a, AF=a.

設(shè)C到平面AEF的距離為h.

∵VC-AEF=VF-ACE, ∴. 即  ∴. ∴AC與平面AEF所成角的正弦值為.

即AC與平面AEF所成角為.

 

21、本小題主要考查橢圓和直線的方程與性質(zhì),兩條直線垂直的條件、兩點間的距離、不等式的性質(zhì)等基本知識及綜合分析能力

解:∵. 即.

當MN或PQ中有一條直線垂直于x軸時,另一條直線必垂直于y軸. 不妨設(shè)MN⊥y軸,則PQ⊥x軸.

∵F(0, 1) ∴MN的方程為:y=1,PQ的方程為:x=0分別代入橢圓中得:|MN|=, |PQ|=2.

∴S四邊形PMQN=|MN|?|PQ|=××2=2.

當MN,PQ都不與坐標軸垂直時,設(shè)MN的方程為y=kx+1 (k≠0),代入橢圓中得:(k2+2)x2+2kx-1=0,  ∴x1+x2=, x1?x2=.

同理可得:.

∴S四邊形PMQN=|MN|?|PQ|==

(當且僅當即時,取等號).

又S四邊形PMQN =,∴此時, S四邊形PMQN.

綜上可知:(S四邊形PMQN )max=2,  (S四邊形PMQN )min=.

 

22、本小題主要考查導(dǎo)數(shù)的概念和計算,應(yīng)用導(dǎo)數(shù)研究函數(shù)性質(zhì)的方法及推理和運算能力

解:⑴令=0  即[x2-2(a-1)x-2a]ex=0  ∴x2-2(a-1)x-2a=0

∵△=[2(a-1)]2+8a=4(a2+1)>0  ∴x1=, x2=

又∵當x∈(-∞, )時,>0;

當x∈(, )時,<0;

當x∈(, +∞)時,>0.

∴x1, x2分別為f (x)的極大值與極小值點.

又∵;當時.

而f ()=<0.

∴當x=時,f (x)取得最小值.

⑵f (x)在[-1, 1]上單調(diào),則≥ 0(或≤ 0)在[-1, 1]上恒成立.

而=[x2-2(a-1)x-2a]ex, 令g(x)= x2-2(a-1)x-2a=[x-(a-1)]2-(a2+1).

∴≥ 0(或≤ 0) 即g(x) ≥ 0(或≤ 0).

當g(x) ≥ 0在[-1, 1]上恒成立時有:

①當-1≤ a-1 ≤1即0≤ a ≤2時, g(x)min=g(a-1)= -(a2+1) ≥ 0(舍);

②當a-1>1即a ≥ 2時, g(x)min=g(1)= 3-4a ≥ 0 ∴a≤(舍).

當g(x) ≤ 0在[-1, 1]上恒成立時,有:

①當-1≤ a-1 ≤ 0即0≤ a ≤ 1時, g(x)max=g(1)=3-4a ≤ 0, ∴≤ a ≤ 1;

②當0< a-1 ≤ 1即1< a ≤ 2時, g(x)max=g(-1)= -1 ≤ 0, ∴1< a ≤ 2;

③當1< a-1即a > 2時, g(x)max=g(-1)= -1 ≤ 0, ∴a >2.

故a∈[,+∞].

 

 

 


同步練習冊答案