(1)證明:數(shù)列是等差數(shù)列, 查看更多

 

題目列表(包括答案和解析)

等差數(shù)列{an}的各項(xiàng)均為正整數(shù),a1=3,前n項(xiàng)和為Sn,等比數(shù)列{bn}中,b1=1,且b2S2=64,{ban}是公比為64的等比數(shù)列.
(1)求{an}與{bn};
(2)證明:
1
S1
+
1
S2
+…+
1
Sn
3
4

查看答案和解析>>

等差數(shù)列{an}的公差d不為零,首項(xiàng)a1=1,a2是a1和a5的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn
(2)證明數(shù)列{2an}為等比數(shù)列;
(3)求數(shù)列{
1anan+1
}
的前n項(xiàng)和Tn

查看答案和解析>>

等差數(shù)列{ an}中a3=7,a1+a2+a3=12,記Sn為{an}的前n項(xiàng)和,令bn=anan+1,數(shù)列{
1
bn
}的前n項(xiàng)和為Tn
(1)求an和Sn;
(2)求證:Tn
1
3

(3)是否存在正整數(shù)m,n,且1<m<n,使得T1,Tm,Tn成等比數(shù)列?若存在,求出m,n的值,若不存在,說(shuō)明理由.

查看答案和解析>>

等差數(shù)列{an}中,a1,a2,a3分別是下表第一、二、三列中的某一個(gè)數(shù),且a1,a2,a3中的任何兩個(gè)數(shù)不在下表的同一行.
第一列 第二列 第三列
第一行 -3 3 1
第二行 5 0 2
第三行 -1 2 0
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足:bn=
an+2
2n
,設(shè)數(shù)列{bn}的前n項(xiàng)和Sn(n∈N*),證明:Sn<2.

查看答案和解析>>

等差數(shù)列{an}中a3=7,a1+a2+a3=12,記為{an}的前n項(xiàng)和,令bn=anan+1,數(shù)列的前n項(xiàng)和為Tn.(1)求an和Sn; (2)求證:Tn<;(3)是否存在正整數(shù)m , n ,且1<m<n ,使得T1 , Tm , Tn成等比數(shù)列?若存在,求出m ,n的值,若不存在,說(shuō)明理由.

查看答案和解析>>

1.;   2.   2.   3.200   4. 3      5.  6.     7.

8.6  9.;  10.    11.1005    12.4    13.  1    14.

15.解: (1).如圖,,

      即

   (2).在中,由正弦定理得

    由(1)得

    即

    

16.解:(Ⅰ) 在△PAC中,∵PA=3,AC=4,PC=5,

        ∴,∴;又AB=4,PB=5,∴在△PAB中,

       同理可得

       ∵,∴

      ∵平面ABC,∴PA⊥BC. 

(Ⅱ)  如圖所示取PC的中點(diǎn)G,

連結(jié)AG,BG,∵PF:FC=3:1,∴F為GC的中點(diǎn)

      又D、E分別為BC、AC的中點(diǎn),

∴AG∥EF,BG∥FD,又AG∩GB=G,EF∩FD=F……………7分 

      ∴面ABG∥面DEF           

即PC上的中點(diǎn)G為所求的點(diǎn)                  …………… 9分

(Ⅲ)

17.解:(1)由題意得,  

整理得,解得, 

所以“學(xué)習(xí)曲線”的關(guān)系式為. 

(2)設(shè)從第個(gè)單位時(shí)間起的2個(gè)單位時(shí)間內(nèi)的平均學(xué)習(xí)效率為,則

 

,則,  

顯然當(dāng),即時(shí),最大, 

代入,得,

所以,在從第3個(gè)單位時(shí)間起的2個(gè)單位時(shí)間內(nèi)的平均學(xué)習(xí)效率最高.

18. 解:(1)由題可得,,設(shè)

,,……………………2分

,∵點(diǎn)在曲線上,則,∴,從而,得.則點(diǎn)P的坐標(biāo)為. ……………………5分

(2)由題意知,兩直線PA、PB的斜率必存在,設(shè)PB的斜率為,………6分

則BP的直線方程為:.由 ,設(shè),則,

同理可得,則,. ………………9分

所以:AB的斜率為定值. ………………10分

(3)設(shè)AB的直線方程:.

,得,

,得

P到AB的距離為,………………12分

。

當(dāng)且僅當(dāng)取等號(hào)

∴三角形PAB面積的最大值為!14分

 

19.解: (1)依題意有,于是.

所以數(shù)列是等差數(shù)列.                              .4分

(2)由題意得,即 , ()         ①

所以又有.                        ②   

由②①得:, 所以是常數(shù).       

都是等差數(shù)列.

,那么得    ,

.    (   

                              10分

(3) 當(dāng)為奇數(shù)時(shí),,所以

當(dāng)為偶數(shù)時(shí),所以       

軸,垂足為,要使等腰三角形為正三角形,必須且只須:.                             

當(dāng)為奇數(shù)時(shí),有,即        ①

, 當(dāng)時(shí),. 不合題意.                    

當(dāng)為偶數(shù)時(shí),有,同理可求得  .

;;當(dāng)時(shí),不合題意.

綜上所述,使等腰三角形中,有正三角形,的值為

;;16分

20⑴當(dāng)x≥1時(shí),只需2+a≥0即a≥-2

⑵作差變形可得:

=  (*)

x1>0,x2>o  從而

∴l(xiāng)n,又a<0   ∴(*)式≥0

(當(dāng)且僅當(dāng)x1=x2時(shí)取“=”號(hào))

 (3)可化為:

 x ∴l(xiāng)nx≤1≤x,因等號(hào)不能同時(shí)取到,∴l(xiāng)nx<x,lnx―x<0

∴a≥

, x ,

=

 x,∴l(xiāng)nx―1―<0,且1―x≤0

從而,,所以g(x)在x上遞增,從而=g(1)= ―

由題設(shè)a≥―

存在x,不等式f(x)≤(a+3)―能成立且a

21.A解(1)利用△CDO≌△BCM,可證MB=OC=AB

(2)由△PMB∽△BMC,得,∴BP=

B、設(shè)M=,則=8=,故

       =,故

聯(lián)立以上兩方程組解得a=6,b=2,c=4,d=4,故M=

C.求直線)被曲線所截的弦長(zhǎng),將方程,分別化為普通方程:

………(5分)

 D.解:由柯西不等式可得

 

22、解析:(1)記“”為事件A, ()的取值共有10種情況,…………1分

滿足的()的取值有以下4種情況:

(3,2),(4,2),(5,2),(5,4),

所以

(2)隨機(jī)變量的取值為2,3,4,5,的分布列是

2

3

4

5

P

               …………10分

所以的期望為

23、解:(1)由

∵在數(shù)列,∴,∴

故數(shù)列中的任意一項(xiàng)都小于1

(2)由(1)知,那么,

由此猜想:(n≥2).下面用數(shù)學(xué)歸納法證明:

①當(dāng)n=2時(shí),顯然成立;

②當(dāng)n=k時(shí)(k≥2,k∈N)時(shí),假設(shè)猜想正確,即

那么,

∴當(dāng)n=k+1時(shí),猜想也正確

綜上所述,對(duì)于一切,都有。

 

 

 


同步練習(xí)冊(cè)答案