設(shè).是直角坐標(biāo)系內(nèi)的兩條直線.已知命題甲:“直線.的傾斜角相等 .命題乙:“直線與平行 .則命題甲是命題乙的(A)充分不必要條件 (B)必要不充分條件(C)充要條件 (D)不充分也不必要的條件 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標(biāo)系xOy中,已知圓x2+y2=1與x軸正半軸的交點為F,AB為該圓的一條弦,直線AB的方程為x=m.記以AB為直徑的圓為⊙C,記以點F為右焦點、短半軸長為b(b>0,b為常數(shù))的橢圓為D.

(1)求⊙C和橢圓D的標(biāo)準(zhǔn)方程;

(2)當(dāng)b=1時,求證:橢圓D上任意一點都不在⊙C的內(nèi)部;

(3)已知點M是橢圓D的長軸上異于頂點的任意一點,過點M且與x軸不垂直的直線交橢圓D于P、Q兩點(點P在x軸上方),點P關(guān)于x軸的對稱點為N,設(shè)直線QN交x軸于點L,試判斷·是否為定值?并證明你的結(jié)論.

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,已知圓x2+y2=1與x軸正半軸的交點為F,AB為該圓的一條弦,直線AB的方程為x=m.記以AB為直徑的圓為⊙C,記以點F為右焦點、短半軸長為b(b>0,b為常數(shù))的橢圓為D.
(1)求⊙C和橢圓D的標(biāo)準(zhǔn)方程;
(2)當(dāng)b=1時,求證:橢圓D上任意一點都不在⊙C的內(nèi)部;
(3)已知點M是橢圓D的長軸上異于頂點的任意一點,過點M且與x軸不垂直的直線交橢圓D于P、Q兩點(點P在x軸上方),點P關(guān)于x軸的對稱點為N,設(shè)直線QN交x軸于點L,試判斷
OM
OL
是否為定值?并證明你的結(jié)論.

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,已知圓x2+y2=1與x軸正半軸的交點為F,AB為該圓的一條弦,直線AB的方程為x=m.記以AB為直徑的圓為⊙C,記以點F為右焦點、短半軸長為b(b>0,b為常數(shù))的橢圓為D.
(1)求⊙C和橢圓D的標(biāo)準(zhǔn)方程;
(2)當(dāng)b=1時,求證:橢圓D上任意一點都不在⊙C的內(nèi)部;
(3)已知點M是橢圓D的長軸上異于頂點的任意一點,過點M且與x軸不垂直的直線交橢圓D于P、Q兩點(點P在x軸上方),點P關(guān)于x軸的對稱點為N,設(shè)直線QN交x軸于點L,試判斷是否為定值?并證明你的結(jié)論.

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,已知圓x2+y2=1與x軸正半軸的交點為F,AB為該圓的一條弦,直線AB的方程為x=m.記以AB為直徑的圓為⊙C,記以點F為右焦點、短半軸長為b(b>0,b為常數(shù))的橢圓為D.
(1)求⊙C和橢圓D的標(biāo)準(zhǔn)方程;
(2)當(dāng)b=1時,求證:橢圓D上任意一點都不在⊙C的內(nèi)部;
(3)已知點M是橢圓D的長軸上異于頂點的任意一點,過點M且與x軸不垂直的直線交橢圓D于P、Q兩點(點P在x軸上方),點P關(guān)于x軸的對稱點為N,設(shè)直線QN交x軸于點L,試判斷是否為定值?并證明你的結(jié)論.

查看答案和解析>>

一、選擇題(本大題共12小題,每小題5分,共60分)

1~5  D A B D C    6~10  C A B D B     11~12  C A

二、填空題(本大題共4小題,每小題4分,共16分)

13.;     14.21 ;       15. ;      16..

三、解答題(本大題共6小題,共74分)

17.(本題滿分13分)

解:(1)甲、乙兩衛(wèi)星各自預(yù)報一次,記“甲預(yù)報準(zhǔn)確”為事件A,“乙預(yù)報準(zhǔn)確”為事件B.則兩衛(wèi)星只有一顆衛(wèi)星預(yù)報準(zhǔn)確的概率為:

 … 4分

             = 0.8×(1 - 0.75) + (1 - 08)×0.75 = 0.35   …………6分

答:甲、乙兩衛(wèi)星中只有一顆衛(wèi)星預(yù)報準(zhǔn)確的概率為0.35  ………7分

(2) 甲獨立預(yù)報3次,至少有2次預(yù)報準(zhǔn)確的概率為

         …………10分

    ==0.896             ………………………12分

答:甲獨立預(yù)報3次,至少有2次預(yù)報準(zhǔn)確的概率為0.896. ……… 13分

18.(本題滿分13分)

解:(1)∵         …………………2分

         =  ……………6分

      ∴函數(shù)的最小正周期        …………………7分

       又由可得:

的單調(diào)遞增區(qū)間形如:  ……9分

(2) ∵時, ,

 ∴的取值范圍是              ………………11分

∴函數(shù)的最大值是3,最小值是0 

從而函數(shù)的是               …………13分

19.(本題滿分12分)

解:(1) ∵   ∴由已知條件可得:,并且,

解之得:,                         ……………3分

   從而其首項和公比滿足:  ………5分

   故數(shù)列的通項公式為: ……6分

(2) ∵  

     數(shù)列是等差數(shù)列,         …………………………8分

       =

       ==   …………………10分

    由于,當(dāng)且僅當(dāng)最大時,最大.

        所以當(dāng)最大時,或6        …………………………12分

20.(本題滿分12分)

解:(1) ∵為奇函數(shù)    ∴  ………2分

   ∵,導(dǎo)函數(shù)的最小值為-12 ∴……3分

 又∵直線的斜率為,

并且的圖象在點P處的切線與它垂直

,即    ∴       ……………6分

(2) 由第(1)小題結(jié)果可得:

                ……………9分

   令,得           ……………10分

   ∵,,

   ∴[-1, 3]的最大值為11,最小值為-16.  ………12分

21.(本題滿分12分)

解:(1) ∵函數(shù)有意義的充要條件為

         ,即是  

 ∴函數(shù)的定義域為         …………3分

∵函數(shù)有意義的充要條件為:

∴函數(shù)的定義域為     …………5分

(2)∵由題目條件知

,                      …………………7分

c的取值范圍是:[-5, 5]           …………………8分

(3) 即是

    ∵是奇函數(shù),∴   ………………9分

又∵函數(shù)的定義域為,并且是增函數(shù)

    ………………11分

解之得的取值范圍是:=  …………12分

22.(本題滿分12分)

解:(1) 設(shè)雙曲線的漸近線方程為,即,

∵雙曲線的漸近線與已知的圓相切,圓心到漸近線的距離等于半徑

 ∴    

 ∴雙曲線的漸近線的方程為:         ……………2分

又設(shè)雙曲線的方程為:,則

 ∵雙曲線的漸近線的方程為,且有一個焦點為

,          ………………4分

解之得:,故雙曲線的方程是:  ……………5分

(2) 聯(lián)立方程組,消去得:(*)…………6分

  ∵直線與雙曲線C的左支交于兩點,方程(*)兩根為負數(shù),

   …………8分

又∵線段PQ的中點坐標(biāo)滿足

   ,   ……9分

∴直線的方程為:

即是,

直線軸的截距     ……………………11分

又∵時,的取值范圍是:

∴直線的截距的取值范圍是……12分

 

 

 

 


同步練習(xí)冊答案