[評析]該題需要多想多算.諸多能力聚于一題.突破了常規(guī).單就題本身而言是一個好題.但突破常規(guī)的題一多.就顯得整體試卷太過艱難.說白了.沒有處理好研究與命題的關(guān)系.類似題有:(2003年遼寧11.全國理10文11.天津理10文11)已知長方形的四個頂點A和D(0.1).一質(zhì)點從AB的中點P0沿與AB夾角為θ的方向射到BC上的點P1后.依次反射到CD.DA和AB上的點P2.P3和P4. 設(shè)P4的坐標(biāo)為(x4.0).若. 查看更多

 

題目列表(包括答案和解析)

已知拋物線C:與圓有一個公共點A,且在A處兩曲線的切線與同一直線l

(I)     求r;

(II)   設(shè)m、n是異于l且與C及M都相切的兩條直線,m、n的交點為D,求D到l的距離。

【解析】本試題考查了拋物線與圓的方程,以及兩個曲線的公共點處的切線的運用,并在此基礎(chǔ)上求解點到直線的距離。

【點評】該試題出題的角度不同于平常,因為涉及的是兩個二次曲線的交點問題,并且要研究兩曲線在公共點出的切線,把解析幾何和導(dǎo)數(shù)的工具性結(jié)合起來,是該試題的創(chuàng)新處。另外對于在第二問中更是難度加大了,出現(xiàn)了另外的兩條公共的切線,這樣的問題對于我們以后的學(xué)習(xí)也是一個需要練習(xí)的方向。

 

 

查看答案和解析>>

△ABC中,內(nèi)角A、B、C成等差數(shù)列,其對邊a、b、c滿足,求A。

【解析】本試題主要考查了解三角形的運用,

因為

【點評】該試題從整體來看保持了往年的解題風(fēng)格,依然是通過邊角的轉(zhuǎn)換,結(jié)合了三角形的內(nèi)角和定理的知識,以及正弦定理和余弦定理,求解三角形中的角的問題。試題整體上比較穩(wěn)定,思路也比較容易想,先將利用等差數(shù)列得到角B,然后利用余弦定理求解運算得到A。

 

查看答案和解析>>

設(shè)點是拋物線的焦點,是拋物線上的個不同的點().

(1) 當(dāng)時,試寫出拋物線上的三個定點、、的坐標(biāo),從而使得

(2)當(dāng)時,若,

求證:

(3) 當(dāng)時,某同學(xué)對(2)的逆命題,即:

“若,則.”

開展了研究并發(fā)現(xiàn)其為假命題.

請你就此從以下三個研究方向中任選一個開展研究:

① 試構(gòu)造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);

② 對任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);

③ 如果補充一個條件后能使該逆命題為真,請寫出你認(rèn)為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.

【解析】第一問利用拋物線的焦點為,設(shè),

分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.

由拋物線定義得到

第二問設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.

由拋物線定義得

第三問中①取時,拋物線的焦點為

設(shè)分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;

解:(1)拋物線的焦點為,設(shè),

分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.由拋物線定義得

 

因為,所以,

故可取滿足條件.

(2)設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.

由拋物線定義得

   又因為

所以.

(3) ①取時,拋物線的焦點為,

設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;,

,

.

,,,是一個當(dāng)時,該逆命題的一個反例.(反例不唯一)

② 設(shè),分別過

拋物線的準(zhǔn)線的垂線,垂足分別為,

及拋物線的定義得

,即.

因為上述表達(dá)式與點的縱坐標(biāo)無關(guān),所以只要將這點都取在軸的上方,則它們的縱坐標(biāo)都大于零,則

,

,所以.

(說明:本質(zhì)上只需構(gòu)造滿足條件且的一組個不同的點,均為反例.)

③ 補充條件1:“點的縱坐標(biāo))滿足 ”,即:

“當(dāng)時,若,且點的縱坐標(biāo))滿足,則”.此命題為真.事實上,設(shè)

分別過作拋物線準(zhǔn)線的垂線,垂足分別為,由,

及拋物線的定義得,即,則

又由,所以,故命題為真.

補充條件2:“點與點為偶數(shù),關(guān)于軸對稱”,即:

“當(dāng)時,若,且點與點為偶數(shù),關(guān)于軸對稱,則”.此命題為真.(證略)

 

查看答案和解析>>

某商店投入38萬元經(jīng)銷某種紀(jì)念品,經(jīng)銷時間共60天,為了獲得更多的利潤,商店將每天獲得的利潤投入到次日的經(jīng)營中,市場調(diào)研表明,該商店在經(jīng)銷這一產(chǎn)品期間第天的利潤(單位:萬元,),記第天的利潤率,例如
【小題1】求的值;
【小題2】求第天的利潤率
【小題3】該商店在經(jīng)銷此紀(jì)品期間,哪一天的利潤率最大?并求該天的利潤率。

查看答案和解析>>

如圖,A,B是海面上位于東西方向相距海里的兩個觀測點,現(xiàn)位于A點北偏東45°,B點北偏西60°的D點有一艘輪船發(fā)出求救信號,位于B點南偏西60°且與B點相距海里的C點的救援船立即即前往營救,其航行速度為30海里/小時,該救援船到達(dá)D點需要多長時間?

 

【解析】本試題考查了利用正弦定理和余弦定理求解三角形的實際運用。并考查了分析問題和解決問題的能力。

 

查看答案和解析>>


同步練習(xí)冊答案