[解答](Ⅰ)證明: 對于1<i≤m有= m?-?(m-i+1). -. 同理 -. 查看更多

 

題目列表(包括答案和解析)

【選修4-1幾何證明選講】
如圖,CD為△ABC外接圓的切線,AB的延長線交直線CD于點(diǎn)D,E、F分別為弦AB與弦AC上的點(diǎn),且BC•AE=DC•AF,B、E、F、C四點(diǎn)共圓.
(1)證明:CA是△ABC外接圓的直徑;
(2)若DB=BE=EA,求過B、E、F、C四點(diǎn)的圓的面積與△ABC外接圓面積的比值.

查看答案和解析>>

如圖,已知⊙中,直徑垂直于弦,垂足為,延長線上一點(diǎn),切⊙于點(diǎn),連接于點(diǎn),證明:

【解析】本試題主要考查了直線與圓的位置關(guān)系的運(yùn)用。要證明角相等,一般運(yùn)用相似三角形來得到,或者借助于弦切角定理等等。根據(jù)為⊙的切線,∴為弦切角

連接   ∴…注意到是直徑且垂直弦,所以 且…利用,可以證明。

解:∵為⊙的切線,∴為弦切角

連接   ∴……………………4分

又∵  是直徑且垂直弦  ∴   且……………………8分

    ∴

 

查看答案和解析>>

如圖,四棱錐S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點(diǎn),SE=2EB

(Ⅰ)證明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小                .

 

【解析】本試題主要考查了立體幾何中的運(yùn)用。

(1)證明:因?yàn)镾D⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點(diǎn),SE=2EB   所以ED⊥BS,DE⊥EC,所以ED⊥平面SBC.,因此可知得到平面EDC⊥平面SBC.

(Ⅱ)由SA2= SD2+AD2 = 5 ,AB=1,SE=2EB,AB⊥SA,知

AE2= (1 /3 SA)2+(2/ 3 AB)2 =1,又AD=1.

故△ADE為等腰三角形.

取ED中點(diǎn)F,連接AF,則AF⊥DE,AF2= AD2-DF2 =

連接FG,則FG∥EC,F(xiàn)G⊥DE.

所以,∠AFG是二面角A-DE-C的平面角.

連接AG,AG= 2 ,F(xiàn)G2= DG2-DF2 =,

cos∠AFG=(AF2+FG2-AG2 )/2⋅AF⋅FG =-1 /2 ,

所以,二面角A-DE-C的大小為120°

 

查看答案和解析>>

數(shù)列,滿足

(1)求,并猜想通項(xiàng)公式。

(2)用數(shù)學(xué)歸納法證明(1)中的猜想。

【解析】本試題主要考查了數(shù)列的通項(xiàng)公式求解,并用數(shù)學(xué)歸納法加以證明。第一問利用遞推關(guān)系式得到,,,并猜想通項(xiàng)公式

第二問中,用數(shù)學(xué)歸納法證明(1)中的猜想。

①對n=1,等式成立。

②假設(shè)n=k時(shí),成立,

那么當(dāng)n=k+1時(shí),

,所以當(dāng)n=k+1時(shí)結(jié)論成立可證。

數(shù)列,滿足

(1),并猜想通項(xiàng)公。  …4分

(2)用數(shù)學(xué)歸納法證明(1)中的猜想。①對n=1,等式成立。  …5分

②假設(shè)n=k時(shí),成立,

那么當(dāng)n=k+1時(shí),

,             ……9分

所以

所以當(dāng)n=k+1時(shí)結(jié)論成立                     ……11分

由①②知,猜想對一切自然數(shù)n均成立

 

查看答案和解析>>

已知函數(shù)f(x)(x∈R)滿足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實(shí)數(shù)x只有一個(gè).

(1)求函數(shù)f(x)的表達(dá)式;

(2)若數(shù)列{an}滿足a1,an+1=f(an),bn-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項(xiàng)公式;

(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).

【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

由f(x)=2x只有一解,即=2x,

也就是2ax2-2(1+b)x=0(a≠0)只有一解,

∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

(2)an+1=f(an)=(n∈N*),bn-1, ∴

∴{bn}為等比數(shù)列,q=.又∵a1,∴b1-1=,

bn=b1qn-1n-1n(n∈N*).……………………………9分

(3)證明:∵anbn=an=1-an=1-

∴a1b1+a2b2+…+anbn+…+<+…+

=1-<1(n∈N*).

 

查看答案和解析>>


同步練習(xí)冊答案