題目列表(包括答案和解析)
2 |
2 |
已知.
(1)求的單調(diào)區(qū)間;
(2)證明:當(dāng)時,恒成立;
(3)任取兩個不相等的正數(shù),且,若存在使成立,證明:.
【解析】(1)g(x)=lnx+,= (1’)
當(dāng)k0時,>0,所以函數(shù)g(x)的增區(qū)間為(0,+),無減區(qū)間;
當(dāng)k>0時,>0,得x>k;<0,得0<x<k∴增區(qū)間(k,+)減區(qū)間為(0,k)(3’)
(2)設(shè)h(x)=xlnx-2x+e(x1)令= lnx-1=0得x=e, 當(dāng)x變化時,h(x),的變化情況如表
x |
1 |
(1,e) |
e |
(e,+) |
|
- |
0 |
+ |
|
h(x) |
e-2 |
↘ |
0 |
↗ |
所以h(x)0, ∴f(x)2x-e (5’)
設(shè)G(x)=lnx-(x1) ==0,當(dāng)且僅當(dāng)x=1時,=0所以G(x) 為減函數(shù), 所以G(x) G(1)=0, 所以lnx-0所以xlnx(x1)成立,所以f(x) ,綜上,當(dāng)x1時, 2x-ef(x)恒成立.
(3) ∵=lnx+1∴l(xiāng)nx0+1==∴l(xiāng)nx0=-1 ∴l(xiāng)nx0 –lnx=-1–lnx===(10’) 設(shè)H(t)=lnt+1-t(0<t<1), ==>0(0<t<1), 所以H(t) 在(0,1)上是增函數(shù),并且H(t)在t=1處有意義, 所以H(t) <H(1)=0∵∴=
∴l(xiāng)nx0 –lnx>0, ∴x0 >x
設(shè)不等邊三角形ABC的外心與重心分別為M、G,若A(-1,0),B(1,0)且MG//AB.
(Ⅰ)求三角形ABC頂點(diǎn)C的軌跡方程;
(Ⅱ)設(shè)頂點(diǎn)C的軌跡為D,已知直線過點(diǎn)(0,1)并且與曲線D交于P、N兩點(diǎn),若O為坐標(biāo)原點(diǎn),滿足OP⊥ON,求直線的方程.
【解析】
第一問因為設(shè)C(x,y)()
……3分
∵M(jìn)是不等邊三解形ABC的外心,∴|MA|=|MC|,即(2)
由(1)(2)得.所以三角形頂點(diǎn)C的軌跡方程為,.…6分
第二問直線l的方程為y=kx+1
由消y得。 ∵直線l與曲線D交于P、N兩點(diǎn),∴△=,
又,
∵,∴
得到直線方程。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com