所以問(wèn)題又化為證明不等式 cosα-1]≤0 查看更多

 

題目列表(包括答案和解析)

如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA底面ABCD,AC=,PA=2,E是PC上的一點(diǎn),PE=2EC。

(I)     證明PC平面BED;

(II)   設(shè)二面角A-PB-C為90°,求PD與平面PBC所成角的大小

【解析】本試題主要是考查了四棱錐中關(guān)于線面垂直的證明以及線面角的求解的運(yùn)用。

從題中的線面垂直以及邊長(zhǎng)和特殊的菱形入手得到相應(yīng)的垂直關(guān)系和長(zhǎng)度,并加以證明和求解。

解法一:因?yàn)榈酌鍭BCD為菱形,所以BDAC,又

【點(diǎn)評(píng)】試題從命題的角度來(lái)看,整體上題目與我們平時(shí)練習(xí)的試題和相似,底面也是特殊的菱形,一個(gè)側(cè)面垂直于底面的四棱錐問(wèn)題,那么創(chuàng)新的地方就是點(diǎn)E的位置的選擇是一般的三等分點(diǎn),這樣的解決對(duì)于學(xué)生來(lái)說(shuō)就是比較有點(diǎn)難度的,因此最好使用空間直角坐標(biāo)系解決該問(wèn)題為好。

 

查看答案和解析>>

已知問(wèn)題:上海迪斯尼工程某 施工工地上有一堵墻,工程隊(duì)欲將長(zhǎng)為4a(a>0)的建筑護(hù)欄(厚度不計(jì))借助這堵墻圍成矩形的施工區(qū)域(如圖1),求所得區(qū)域的最大面積.解決這一問(wèn)題的一種方法是:作出護(hù)欄關(guān)于墻面的軸對(duì)稱圖形(如圖2),則原問(wèn)題轉(zhuǎn)化為“已知矩形周長(zhǎng)為8a,求面積的最大值”從而輕松獲解.參考這種借助對(duì)稱圖形解決問(wèn)題的方法,對(duì)于下列情形:已知兩堵墻互相垂直圍成“L”形,工程隊(duì)將長(zhǎng)為4a(a>0)的建筑護(hù)欄借助墻角圍成四邊形的施工區(qū)域(如圖3),可求得所圍區(qū)域的最大面積為
2(
2
+1)a2
2(
2
+1)a2

查看答案和解析>>

(2010•福建模擬)考察等式:
C
0
m
C
r
n-m
+
C
1
m
C
r-1
n-m
+…+
C
r
m
C
0
n-m
=
C
r
n
(*),其中n、m、r∈N*,r≤m<n且r≤n-m.某同學(xué)用概率論方法證明等式(*)如下:
設(shè)一批產(chǎn)品共有n件,其中m件是次品,其余為正品.現(xiàn)從中隨機(jī)取出r件產(chǎn)品,
記事件Ak={取到的r件產(chǎn)品中恰有k件次品},則P(Ak)=
C
k
m
C
r-k
n-m
C
r
n
,k=0,1,2,…,r.
顯然A0,A1,…,Ar為互斥事件,且A0∪A1∪…∪Ar=Ω(必然事件),
因此1=P(Ω)=P(A0)+P(A1)+…P(Ar)=
C
0
m
C
r
n-m
+
C
1
m
C
r-1
n-m
+…+
C
r
m
C
0
n-m
C
r
n
,
所以
C
0
m
C
r
n-m
+
C
1
m
C
r-1
n-m
+…+
C
r
m
C
0
n-m
=
C
r
n
,即等式(*)成立.
對(duì)此,有的同學(xué)認(rèn)為上述證明是正確的,體現(xiàn)了偶然性與必然性的統(tǒng)一;但有的同學(xué)對(duì)上述證明方法的科學(xué)性與嚴(yán)謹(jǐn)性提出質(zhì)疑.現(xiàn)有以下四個(gè)判斷:
①等式(*)成立  ②等式(*)不成立  ③證明正確  ④證明不正確
試寫出所有正確判斷的序號(hào)
①③
①③

查看答案和解析>>

下面對(duì)命題“函數(shù)f(x)=x+
1
x
是奇函數(shù)”的證明不是綜合法的是( 。

查看答案和解析>>

(理)命題“若兩個(gè)正實(shí)數(shù)滿足,那么!

證明如下:構(gòu)造函數(shù),因?yàn)閷?duì)一切實(shí)數(shù),恒有,

,從而得,所以。

根據(jù)上述證明方法,若個(gè)正實(shí)數(shù)滿足時(shí),你可以構(gòu)造函數(shù)

   _______   ,進(jìn)一步能得到的結(jié)論為   ______________  (不必證明).

 

查看答案和解析>>


同步練習(xí)冊(cè)答案