第二個(gè)正六邊形的周長同理可得 查看更多

 

題目列表(包括答案和解析)

在半徑為R的圓內(nèi)接正六邊形內(nèi),依次連接各邊的中點(diǎn),得一正六邊形,又在這一正六邊形內(nèi),再依次連接各邊的中點(diǎn),又得一正六邊形,這樣無限地繼續(xù)下去,求:
(1)前n個(gè)正六邊形的周長之和Sn;
(2)所有這些正六邊形的周長之和S.

查看答案和解析>>

在半徑為R的圓內(nèi)接正六邊形內(nèi),依次連接各邊的中點(diǎn),得一正六邊形,又在這一正六邊形內(nèi),再依次連接各邊的中點(diǎn),又得一正六邊形,這樣無限地繼續(xù)下去,
求:(1)前n個(gè)正六邊形的周長之和Sn;
(2)所有這些正六邊形的周長之和S.

查看答案和解析>>

如圖,在半徑為r的圓內(nèi)作內(nèi)接正六邊形,再作正六邊形的內(nèi)切圓,又在此內(nèi)切圓內(nèi)作內(nèi)接正六邊形,如此無限繼續(xù)下去,設(shè)Sn為前n個(gè)正六邊形的面積之和,則
lim
n→∞
Sn=( 。

查看答案和解析>>

如圖,在半徑為r的圓內(nèi)作內(nèi)接正六邊形,再作正六邊形的內(nèi)切圓, 

又在此內(nèi)切圓內(nèi)作內(nèi)接正六邊形,如此無限繼續(xù)下去,設(shè)為前

個(gè)正六邊形的面積之和,則=(   )

A.               B.                C.               D.

 

查看答案和解析>>

如圖,在半徑為r的圓內(nèi)作內(nèi)接正六邊形,再作正六邊形的內(nèi)切圓, 

又在此內(nèi)切圓內(nèi)作內(nèi)接正六邊形,如此無限繼續(xù)下去,設(shè)為前

個(gè)正六邊形的面積之和,則=(   )

A.               B.                C.               D.

 

查看答案和解析>>


同步練習(xí)冊答案