題目列表(包括答案和解析)
設(shè)函數(shù).
(Ⅰ) 當(dāng)時(shí),求的單調(diào)區(qū)間;
(Ⅱ) 若在上的最大值為,求的值.
【解析】第一問中利用函數(shù)的定義域?yàn)椋?,2),.
當(dāng)a=1時(shí),所以的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2);
第二問中,利用當(dāng)時(shí), >0, 即在上單調(diào)遞增,故在上的最大值為f(1)=a 因此a=1/2.
解:函數(shù)的定義域?yàn)椋?,2),.
(1)當(dāng)時(shí),所以的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2);
(2)當(dāng)時(shí), >0, 即在上單調(diào)遞增,故在上的最大值為f(1)=a 因此a=1/2.
給出以下五個(gè)命題,所有正確命題的序號(hào)為________.
①兩個(gè)向量夾角的范圍與兩條異面直線的夾角的范圍一致;
②a=1是直線y=ax+1和直線y=(a-2)x-1垂直的充要條件;
③函數(shù)的定域?yàn)?I>R,則k的取值范圍是0<k≤1;
④要得到y(tǒng)=3sin(2x+)的圖象,只需將y=3sin2x的圖象左移個(gè)單位;
⑤a>0時(shí),f(x)=x3-ax在[1,+∞)上是單調(diào)遞增函數(shù),則a的最大值是3.
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),若對(duì)任意,,不等式 恒成立,求實(shí)數(shù)的取值范圍.
【解析】第一問利用的定義域是
由x>0及 得1<x<3;由x>0及得0<x<1或x>3,
故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是
第二問中,若對(duì)任意不等式恒成立,問題等價(jià)于只需研究最值即可。
解: (I)的定義域是 ......1分
............. 2分
由x>0及 得1<x<3;由x>0及得0<x<1或x>3,
故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是 ........4分
(II)若對(duì)任意不等式恒成立,
問題等價(jià)于, .........5分
由(I)可知,在上,x=1是函數(shù)極小值點(diǎn),這個(gè)極小值是唯一的極值點(diǎn),
故也是最小值點(diǎn),所以; ............6分
當(dāng)b<1時(shí),;
當(dāng)時(shí),;
當(dāng)b>2時(shí),; ............8分
問題等價(jià)于 ........11分
解得b<1 或 或 即,所以實(shí)數(shù)b的取值范圍是
(本小題滿分12分)
已知向量,,函數(shù).
(1)求函數(shù)的最小正周期以及單調(diào)遞增區(qū)間;
(2)若時(shí), 求的值域;
(3)求方程在內(nèi)的所有實(shí)數(shù)根之和.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com