題目列表(包括答案和解析)
已知,設(shè)命題:不等式解集為R;命題:方程沒有實根,如果命題p或q為真命題,p且q為假命題,求的取值范圍.
【解析】本題先求出p、q為真時的c的取值范圍;然后再對p、q一真一假兩種情況進行討論求解,最后求并集即可.
已知二次函數(shù)的二次項系數(shù)為,且不等式的解集為,
(1)若方程有兩個相等的根,求的解析式;
(2)若的最大值為正數(shù),求的取值范圍.
【解析】第一問中利用∵f(x)+2x>0的解集為(1,3),
設(shè)出二次函數(shù)的解析式,然后利用判別式得到a的值。
第二問中,
解:(1)∵f(x)+2x>0的解集為(1,3),
①
由方程
②
∵方程②有兩個相等的根,
∴,
即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5
a=-1/5代入①得:
(2)由
由 解得:
故當f(x)的最大值為正數(shù)時,實數(shù)a的取值范圍是
已知函數(shù)其中為自然對數(shù)的底數(shù), .(Ⅰ)設(shè),求函數(shù)的最值;(Ⅱ)若對于任意的,都有成立,求的取值范圍.
【解析】第一問中,當時,,.結(jié)合表格和導數(shù)的知識判定單調(diào)性和極值,進而得到最值。
第二問中,∵,,
∴原不等式等價于:,
即, 亦即
分離參數(shù)的思想求解參數(shù)的范圍
解:(Ⅰ)當時,,.
當在上變化時,,的變化情況如下表:
|
- |
+ |
|
||
1/e |
∴時,,.
(Ⅱ)∵,,
∴原不等式等價于:,
即, 亦即.
∴對于任意的,原不等式恒成立,等價于對恒成立,
∵對于任意的時, (當且僅當時取等號).
∴只需,即,解之得或.
因此,的取值范圍是
已知遞增等差數(shù)列滿足:,且成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)若不等式對任意恒成立,試猜想出實數(shù)的最小值,并證明.
【解析】本試題主要考查了數(shù)列的通項公式的運用以及數(shù)列求和的運用。第一問中,利用設(shè)數(shù)列公差為,
由題意可知,即,解得d,得到通項公式,第二問中,不等式等價于,利用當時,;當時,;而,所以猜想,的最小值為然后加以證明即可。
解:(1)設(shè)數(shù)列公差為,由題意可知,即,
解得或(舍去). …………3分
所以,. …………6分
(2)不等式等價于,
當時,;當時,;
而,所以猜想,的最小值為. …………8分
下證不等式對任意恒成立.
方法一:數(shù)學歸納法.
當時,,成立.
假設(shè)當時,不等式成立,
當時,, …………10分
只要證 ,只要證 ,
只要證 ,只要證 ,
只要證 ,顯然成立.所以,對任意,不等式恒成立.…14分
方法二:單調(diào)性證明.
要證
只要證 ,
設(shè)數(shù)列的通項公式, …………10分
, …………12分
所以對,都有,可知數(shù)列為單調(diào)遞減數(shù)列.
而,所以恒成立,
故的最小值為.
已知函數(shù),
(1)求函數(shù)的定義域;
(2)求函數(shù)在區(qū)間上的最小值;
(3)已知,命題p:關(guān)于x的不等式對函數(shù)的定義域上的任意恒成立;命題q:指數(shù)函數(shù)是增函數(shù).若“p或q”為真,“p且q”為假,求實數(shù)m的取值范圍.
【解析】第一問中,利用由 即
第二問中,,得:
,
第三問中,由在函數(shù)的定義域上 的任意,,當且僅當時等號成立。當命題p為真時,;而命題q為真時:指數(shù)函數(shù).因為“p或q”為真,“p且q”為假,所以
當命題p為真,命題q為假時;當命題p為假,命題q為真時分為兩種情況討論即可 。
解:(1)由 即
(2),得:
,
(3)由在函數(shù)的定義域上 的任意,,當且僅當時等號成立。當命題p為真時,;而命題q為真時:指數(shù)函數(shù).因為“p或q”為真,“p且q”為假,所以
當命題p為真,命題q為假時,
當命題p為假,命題q為真時,,
所以
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com