3.若從身高屬于第六組和第八組的所有男生中隨機抽取兩名男生.記他們的身高分別為.求滿足:的事件概率. 查看更多

 

題目列表(包括答案和解析)

某校對高三年級800名男生的身高(單位:cm)進行了統(tǒng)計,隨機抽取的一個容量為50的樣本的頻率分布直方圖的部分圖形如圖所示,已知第一組與第八組人數相同,第六組、第七組、第八組人數依次構成等差數列.
(1)估計這所學校高三年級全體男生身高180 cm以上(含180 cm)的人數;
(2)求第六組、第七組的頻率并補充完整頻率分布直方圖;
(3)若從身高屬于第六組和第八組的所有男生中隨機抽取兩名男生,記他們的身高分別為x、y,求滿足|xy|≤5的事件概率.

查看答案和解析>>

從某學校的800名男生中隨機抽取50名測量身高,被測學生身高全部介于155cm和195cm之間,將測量結果按如下方式分成八組:第一組[155,160),第二組[160,165),…,第八組[190,195],下圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數相同,第六組的人數為4人.
(Ⅰ)求第七組的頻率;
(Ⅱ)估計該校的800名男生的身高的中位數以及身高在180cm以上(含180cm)的人數;
(Ⅲ)若從身高屬于第六組和第八組的所有男生中隨機抽取兩名男生,求抽出的兩名男生是在同一組的概率.

查看答案和解析>>

從某學校的800名男生中隨機抽取50名測量身高,被測學生身高全部介于155cm和195cm之間,將測量結果按如下方式分成八組:第一組[155,160),第二組[160,165),…,第八組[190,195],右圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數相同,第六組的人數為4人.
(Ⅰ)求第七組的頻率;
(Ⅱ)估計該校的800名男生的身高的中位數以及身高在180cm以上(含180cm)的人數;
(Ⅲ)若從身高屬于第六組和第八組的所有男生中隨機抽取兩名男生,記他們的身高分別為x,y,事件E={|x-y|≤5},事件F={|x-y|>15},求P(E∪F).

查看答案和解析>>

從某學校的800名男生中隨機抽取50名測量身高,被測學生身高全部介于155cm和195cm之間,將測量結果按如下方式分成八組:第一組[155,160),第二組[160,165),…,第八組[190,195],右圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數相同,第六組的人數為4人.
(Ⅰ)求第七組的頻率;
(Ⅱ)估計該校的800名男生的身高的中位數以及身高在180cm以上(含180cm)的人數;
(Ⅲ)若從身高屬于第六組和第八組的所有男生中隨機抽取兩名男生,記他們的身高分別為x,y,事件E={|x-y|≤5},事件F={|x-y|>15},求P(E∪F).

查看答案和解析>>

從某校高二年級名男生中隨機抽取名學生測量其身高,據測量被測學生的身高全部在之間.將測量結果按如下方式分成組:第一組,第二組, ,第八組,如下右圖是按上述分組得到的頻率分布直方圖的一部分.已知第一組與第八組的人數相同,第六組、第七組和第八組的人數依次成等差數列.
頻率分布表如下:

分組
頻數
頻率
頻率/組距
 
 
 
 








 
 
 
 
頻率分布直方圖如下:

(1)求頻率分布表中所標字母的值,并補充完成頻率分布直方圖;
(2)若從身高屬于第六組和第八組的所有男生中隨機抽取名男生,記他們的身高分別為,求滿足:的事件的概率.

查看答案和解析>>

17.本題滿分14分.已知函數。

(1)       求函數上的值域;

(2)       在中,若,求的值。

16

21.本小題滿分12分.

已知函數fx.=lnx-,

(I)        求函數fx.的單調增區(qū)間;

(II)     若函數fx.在[1,e]上的最小值為,求實數a的值。

3.已知,則的值為    .

A.-2          B.-1        C.1             D.2

19.解:1.∵,,

,

,

,

,.

2.∵,,∴,

,∴,

,∴,

,

.

20.此題主要考查數列.等差.等比數列的概念.數列的遞推公式.數列前n項和的求法

  同時考查學生的分析問題與解決問題的能力,邏輯推理能力及運算能力.

解:I.

    

Ⅱ.

16.本題滿分14分.

解:1.連,四邊形菱形  

www.ks5u.com

  的中點,

               ,

                   

2.當時,使得,連,交,則 的中點,又上中線,為正三角形的中心,令菱形的邊長為,則,。

           

       

   即:   。

22.本小題滿分14分.

解:I.1.,

    !1分

    處取得極值,

    …………………………………………………2分

    即

    ………………………………………4分

   ii.在,

    由

          

           ,

    ;

    當;

    ;

    .……………………………………6分

    面

    ,

    且

    又

   

   

    ……………9分

   Ⅱ.當,

    ①;

    ②當時,

    ,

   

    ③

    從面得;

    綜上得,.………………………14分

 

 


同步練習冊答案