即 3分當(dāng)x→2+時,函數(shù)無限接近于2, 查看更多

 

題目列表(包括答案和解析)

函數(shù)是定義在上的奇函數(shù),且。

(1)求實數(shù)a,b,并確定函數(shù)的解析式;

(2)判斷在(-1,1)上的單調(diào)性,并用定義證明你的結(jié)論;

(3)寫出的單調(diào)減區(qū)間,并判斷有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)

【解析】本試題主要考查了函數(shù)的解析式和奇偶性和單調(diào)性的綜合運用。第一問中,利用函數(shù)是定義在上的奇函數(shù),且。

解得

(2)中,利用單調(diào)性的定義,作差變形判定可得單調(diào)遞增函數(shù)。

(3)中,由2知,單調(diào)減區(qū)間為,并由此得到當(dāng),x=-1時,,當(dāng)x=1時,

解:(1)是奇函數(shù),

,,………………2分

,又,,

(2)任取,且

,………………6分

,,,

在(-1,1)上是增函數(shù)。…………………………………………8分

(3)單調(diào)減區(qū)間為…………………………………………10分

當(dāng),x=-1時,,當(dāng)x=1時,。

 

查看答案和解析>>

在四棱錐中,平面,底面為矩形,.

(Ⅰ)當(dāng)時,求證:;

(Ⅱ)若邊上有且只有一個點,使得,求此時二面角的余弦值.

【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時,底面ABCD為正方形,

又因為,………………2分

,得證。

第二問,建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知時,存在點Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得

由此知道a=2,  設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

解:(Ⅰ)當(dāng)時,底面ABCD為正方形,

又因為,………………3分

(Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,

則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知時,存在點Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得由此知道a=2,

設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

 

查看答案和解析>>

(本小題滿分12分)為了解甲、乙兩廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽取14件和5件,測量產(chǎn)品中的微量元素x,y的含量(單位:毫克).下表是乙廠的5件產(chǎn)品的測量數(shù)據(jù):

編號

1

2

3

4

5

x

169

178

166

175

180

y

75

80

77

70

81

已知甲廠生產(chǎn)的產(chǎn)品共有98件.

(I)求乙廠生產(chǎn)的產(chǎn)品數(shù)量;

(Ⅱ)當(dāng)產(chǎn)品中的微量元素x,y滿足x≥175,且y≥75時,該產(chǎn)品為優(yōu)等品,用上述樣本數(shù)據(jù)估計乙廠生產(chǎn)的優(yōu)等品的數(shù)量;

(Ⅲ)從乙廠抽出的上述5件產(chǎn)品中,隨機抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)的分布列及其均值(即數(shù)學(xué)期望).

 

查看答案和解析>>

(本小題滿分13分)

       為了解甲、乙兩廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽出取14件和5件,測量產(chǎn)品中的微量元素x,y的含量(單位:毫克).下表是乙廠的5件產(chǎn)品的測量數(shù)據(jù):

編號

1

2

3

4

5

x

169

178

166

175

180

y

75

80

77

70

81

(1)已知甲廠生產(chǎn)的產(chǎn)品共有98件,求乙廠生產(chǎn)的產(chǎn)品數(shù)量;

(2)當(dāng)產(chǎn)品中的微量元素x,y滿足x≥175,且y≥75時,該產(chǎn)品為優(yōu)等品。用上述樣本數(shù)據(jù)估計乙廠生產(chǎn)的優(yōu)等品的數(shù)量;

(3)從乙廠抽出的上述5件產(chǎn)品中,隨機抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)的分布列極其均值(即數(shù)學(xué)期望)。

查看答案和解析>>

已知函數(shù)f(x)=cos(2x+)+sinx·cosx

⑴ 求函數(shù)f(x)的單調(diào)減區(qū)間;       ⑵ 若xÎ[0,],求f(x)的最值;

 ⑶ 若f(a)=,2a是第一象限角,求sin2a的值.

【解析】第一問中,利用f(x)=cos2x-sin2x-cos2x+sin2x=sin2x-cos2x=sin(2x-)令+2kp≤2x-+2kp,

解得+kp≤x≤+kp 

第二問中,∵xÎ[0, ],∴2x-Î[-,],

∴當(dāng)2x-=-,即x=0時,f(x)min=-,

當(dāng)2x-, 即x=時,f(x)max=1

第三問中,(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

∴ 2kp-<2a-+2kp,∴ cos(2a-)=

利用構(gòu)造角得到sin2a=sin[(2a-)+]

解:⑴ f(x)=cos2x-sin2x-cos2x+sin2x     ………2分

sin2x-cos2x=sin(2x-)                 ……………………3分

⑴ 令+2kp≤2x-+2kp,

解得+kp≤x≤+kp          ……………………5分

∴ f(x)的減區(qū)間是[+kp,+kp](kÎZ)            ……………………6分

⑵ ∵xÎ[0, ],∴2x-Î[-,],           ……………………7分

∴當(dāng)2x-=-,即x=0時,f(x)min=-,        ……………………8分

當(dāng)2x-, 即x=時,f(x)max=1          ……………………9分

⑶ f(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

∴ 2kp-<2a-+2kp,∴ cos(2a-)=,   ……………………11分

∴ sin2a=sin[(2a-)+]

=sin(2a-)·cos+cos(2a-)·sin   ………12分

××

 

查看答案和解析>>


同步練習(xí)冊答案