(Ⅱ) 若在上存在極值點.求實數(shù)的取值范圍. 查看更多

 

題目列表(包括答案和解析)

若實數(shù)a>0且a≠2,函數(shù)f(x)=
1
3
ax3-
1
2
(a+2)x2+2x+1.
(1)證明函數(shù)f(x)在x=1處取得極值,并求出函數(shù)f(x)的單調(diào)區(qū)間;
(2)若在區(qū)間(0,+∞)上至少存在一點x0,使得f(x0)<1成立,求實數(shù)a的取值范圍.

查看答案和解析>>

若實數(shù)a≠0,函數(shù)f(x)=-2ax3-ax2+12ax+1,g(x)=2ax2+3.
(1)令h(x)=f(x)-g(x),求函數(shù)h(x)的極值;
(2)若在區(qū)間(0,+∞)上至少存在一點x0,使得f(x0)>g(x0)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

已知函數(shù)

(1)若函數(shù)在區(qū)間上存在極值點,求實數(shù)的取值范圍;

(2)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍;

(3)求證:.(為自然對數(shù)的底數(shù))

 

查看答案和解析>>

已知函數(shù)
(1)若函數(shù)在區(qū)間上存在極值點,求實數(shù)的取值范圍;
(2)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍;
(3)求證:.(為自然對數(shù)的底數(shù))

查看答案和解析>>

已知函數(shù)
(1)若函數(shù)在區(qū)間上存在極值點,求實數(shù)的取值范圍;
(2)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍;
(3)求證:.(為自然對數(shù)的底數(shù))

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的.

1.A  。玻瓸   。常谩  。矗瓵  。担瓸

6.D  。罚痢  。福谩  。梗瓺   10.C

 

二、填空題:本大題共4小題,每小題4分,共16分.

11.    12.    13.    14.

15.       16.(也可表示成)    17.①②③

 

三、解答題:本大題共6小題,共74分.

18.解:(Ⅰ)由

                                         ---------4分

,得

,即為鈍角,故為銳角,且

.                                     ---------8分

(Ⅱ)設(shè),

由余弦定理得

解得

.                        ---------14分

 

19.解:(Ⅰ)由,得

則平面平面,

平面平面,

在平面上的射影在直線上,

在平面上的射影在直線上,

在平面上的射影即為點,

平面.                                 --------6分

(Ⅱ)連接,由平面,得即為直線與平面所成角。

在原圖中,由已知,可得

折后,由平面,知

,即

則在中,有,,則,

即折后直線與平面所成角的余弦值為.       --------14分

 

20.解:(Ⅰ)由,

,故

故數(shù)列為等比數(shù)列;                       --------6分

 

 

 

(Ⅱ)由(Ⅰ)可知

對任意的恒成立

由不等式恒成立,得

.           --------14分

 

21.解:

(Ⅰ)由已知可得

此時,                                 --------4分

的單調(diào)遞減區(qū)間為;----7分

(Ⅱ)由已知可得上存在零點且在零點兩側(cè)值異號

時,,不滿足條件;

時,可得上有解且

設(shè)

①當(dāng)時,滿足上有解

此時滿足

②當(dāng)時,即上有兩個不同的實根

無解

綜上可得實數(shù)的取值范圍為.           --------15分

 

22.解:(Ⅰ)(?)由已知可得,

則所求橢圓方程.          --------3分

(?)由已知可得動圓圓心軌跡為拋物線,且拋物線的焦點為,準(zhǔn)線方程為,則動圓圓心軌跡方程為.     --------6分

(Ⅱ)由題設(shè)知直線的斜率均存在且不為零

設(shè)直線的斜率為,則直線的方程為:

聯(lián)立

消去可得                 --------8分

由拋物線定義可知:

-----10分

同理可得                                --------11分

(當(dāng)且僅當(dāng)時取到等號)

所以四邊形面積的最小值為.                   --------15分

 

 


同步練習(xí)冊答案