D.都不是偶函數(shù) 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)的定義域D關(guān)于原點(diǎn)對(duì)稱,0∈D,且存在常數(shù)a>0,使f(a)=1,又f(x1-x2)=
f(x1)-f(x2)1+f(x1)f(x2)
,
(1)寫出f(x)的一個(gè)函數(shù)解析式,并說明其符合題設(shè)條件;
(2)判斷并證明函數(shù)f(x)的奇偶性;
(3)若存在正常數(shù)T,使得等式f(x)=f(x+T)或者f(x)=f(x-T)對(duì)于x∈D都成立,則都稱f(x)是周期函數(shù),T為周期;試問f(x)是不是周期函數(shù)?若是,則求出它的一個(gè)周期T;若不是,則說明理由.

查看答案和解析>>

設(shè)函數(shù)f(x)的定義域D關(guān)于原點(diǎn)對(duì)稱,0∈D,且存在常數(shù)a>0,使f(a)=1,又f(x1-x2)=數(shù)學(xué)公式,
(1)寫出f(x)的一個(gè)函數(shù)解析式,并說明其符合題設(shè)條件;
(2)判斷并證明函數(shù)f(x)的奇偶性;
(3)若存在正常數(shù)T,使得等式f(x)=f(x+T)或者f(x)=f(x-T)對(duì)于x∈D都成立,則都稱f(x)是周期函數(shù),T為周期;試問f(x)是不是周期函數(shù)?若是,則求出它的一個(gè)周期T;若不是,則說明理由.

查看答案和解析>>

設(shè)函數(shù)f(x)的定義域D關(guān)于原點(diǎn)對(duì)稱,0∈D,且存在常數(shù)a>0,使f(a)=1,又f(x1-x2)=
f(x1)-f(x2)
1+f(x1)f(x2)
,
(1)寫出f(x)的一個(gè)函數(shù)解析式,并說明其符合題設(shè)條件;
(2)判斷并證明函數(shù)f(x)的奇偶性;
(3)若存在正常數(shù)T,使得等式f(x)=f(x+T)或者f(x)=f(x-T)對(duì)于x∈D都成立,則都稱f(x)是周期函數(shù),T為周期;試問f(x)是不是周期函數(shù)?若是,則求出它的一個(gè)周期T;若不是,則說明理由.

查看答案和解析>>

已知偶函數(shù)f(x)與奇函數(shù)g(x)的定義域都是(-2,2),它們?cè)赱0,2)上的圖象分別為圖(1)、(2)所示,則使關(guān)于x的不等式f(x)•g(x)>0成立的x的取值范圍為( )

A.(-2,-1)∪(1,2)
B.(-1,0)∪(0,1)
C.(-1,0)∪(1,2)
D.(-2,-1)∪(0,1)

查看答案和解析>>

已知偶函數(shù)f(x)與奇函數(shù)g(x)的定義域都是(-2,2),它們?cè)赱0,2)上的圖象分別為圖(1)、(2)所示,則使關(guān)于x的不等式f(x)•g(x)>0成立的x的取值范圍為( )

A.(-2,-1)∪(1,2)
B.(-1,0)∪(0,1)
C.(-1,0)∪(1,2)
D.(-2,-1)∪(0,1)

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.

1.A  。玻瓸    3.C  。矗瓵  。担瓸

6.D  。罚痢  。福谩  。梗瓺   10.C

 

二、填空題:本大題共4小題,每小題4分,共16分.

11.    12.    13.    14.

15.       16.(也可表示成)    17.①②③

 

三、解答題:本大題共6小題,共74分.

18.解:(Ⅰ)由

                                         ---------4分

,得

,即為鈍角,故為銳角,且

.                                     ---------8分

(Ⅱ)設(shè),

由余弦定理得

解得

.                        ---------14分

 

19.解:(Ⅰ)由,得

則平面平面,

平面平面,

在平面上的射影在直線上,

在平面上的射影在直線上,

在平面上的射影即為點(diǎn),

平面.                                 --------6分

(Ⅱ)連接,由平面,得即為直線與平面所成角。

在原圖中,由已知,可得

折后,由平面,知

,即

則在中,有,則,

即折后直線與平面所成角的余弦值為.       --------14分

 

20.解:(Ⅰ)由,

,故

故數(shù)列為等比數(shù)列;                       --------6分

 

 

 

(Ⅱ)由(Ⅰ)可知

對(duì)任意的恒成立

由不等式對(duì)恒成立,得

.           --------14分

 

21.解:

(Ⅰ)由已知可得

此時(shí),                                 --------4分

的單調(diào)遞減區(qū)間為;----7分

(Ⅱ)由已知可得上存在零點(diǎn)且在零點(diǎn)兩側(cè)值異號(hào)

時(shí),,不滿足條件;

時(shí),可得上有解且

設(shè)

①當(dāng)時(shí),滿足上有解

此時(shí)滿足

②當(dāng)時(shí),即上有兩個(gè)不同的實(shí)根

無解

綜上可得實(shí)數(shù)的取值范圍為.           --------15分

 

22.解:(Ⅰ)(?)由已知可得,

則所求橢圓方程.          --------3分

(?)由已知可得動(dòng)圓圓心軌跡為拋物線,且拋物線的焦點(diǎn)為,準(zhǔn)線方程為,則動(dòng)圓圓心軌跡方程為.     --------6分

(Ⅱ)由題設(shè)知直線的斜率均存在且不為零

設(shè)直線的斜率為,,則直線的方程為:

聯(lián)立

消去可得                 --------8分

由拋物線定義可知:

-----10分

同理可得                                --------11分

(當(dāng)且僅當(dāng)時(shí)取到等號(hào))

所以四邊形面積的最小值為.                   --------15分

 

 


同步練習(xí)冊(cè)答案