對于非零向量.定義運算“# : 查看更多

 

題目列表(包括答案和解析)

對于非零向量,定義運算“#”:,其中θ為的夾角.有兩兩不共線的三個向量,下列結(jié)論:
①若,則;②
③若,則;④;

其中正確的個數(shù)有( )
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

對于非零向量,定義運算“#”:,其中θ為的夾角.有兩兩不共線的三個向量,下列結(jié)論:
①若,則;②;
③若,則;④;

其中正確的個數(shù)有( )
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

對于非零向量數(shù)學公式,定義運算“#”:數(shù)學公式,其中θ為數(shù)學公式的夾角.有兩兩不共線的三個向量數(shù)學公式,下列結(jié)論:
①若數(shù)學公式,則數(shù)學公式;②數(shù)學公式;
③若數(shù)學公式,則數(shù)學公式;④數(shù)學公式
數(shù)學公式
其中正確的個數(shù)有


  1. A.
    1個
  2. B.
    2個
  3. C.
    3個
  4. D.
    4個

查看答案和解析>>

對于非零向量,定義運算“”:,其中的夾角,有兩兩不共線的三個向量,下列結(jié)論正確的是(    )

A.若,    B.

C.          D.

查看答案和解析>>

對于非零向量,定義運算“”:,其中的夾角,有兩兩不共線的三個向量,下列結(jié)論正確的是           (    )

       A.若,                         B.

       C.              D.

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的.

1.  A      2. B       3. C       4. A         5.B

6.  D      7. A       8. C       9. D         10.C

 

二、填空題:本大題共4小題,每小題4分,共16分.

11.       12.   13.24     14.

15.168              16.①②③      17.1:(-6):5:(-8)

 

三、解答題:本大題共6小題,共74分.

18.解:(Ⅰ)由

                                         ---------4分

,得

,即為鈍角,故為銳角,且

.                                     ---------8分

(Ⅱ)設,

由余弦定理得

解得

.                        ---------14分

19.解:(1)      --------4分

(2)x可能取的所有值有2,3,4                           --------5分

      

                    --------8分

∴x的分布列為:

∴Ex=                    --------10分

(3)當時,取出的3張卡片上的數(shù)字為1,2,2或1,2,3

當取出的卡片上的數(shù)字為1,2,2或1,2,3的概率為,

                            --------14分

 

20.解:(Ⅰ)EF⊥DN,EF⊥BN,

∴EF⊥平面BDN,

∴平面BDN⊥平面BCEF,

又因為BN為平面BDN與平面BCEF的交線,

∴D在平面BCEF上的射影在直線BN上

而D在平面BCEF上的射影在BC上,

∴D在平面BCEF上的射影即為點B,即BD⊥平面BCEF.   --------4分

(Ⅱ)法一.如圖,建立空間直角坐標系,

∵在原圖中AB=6,∠DAB=60°,

則BN=,DN=,∴折后圖中BD=3,BC=3

,

 

∴折后直線DN與直線BF所成角的余弦值為.     --------9分

法二.在線段BC上取點M,使BM=FN,則MN//BF

∴∠DNM或其補角為DN與BF所成角。

又MN=BF=2,    DM=,

∴折后直線DN與直線BF所成角的余弦值為。

(Ⅲ)∵AD//EF,

∴A到平面BNF的距離等于D到平面BNF的距離,

即所求三棱錐的體積為.               --------14分

21.解:(Ⅰ)(?)由已知可得,

則所求橢圓方程.          --------3分

(?)由已知可得動圓圓心軌跡為拋物線,且拋物線的焦點為,準線方程為,則動圓圓心軌跡方程為.     --------6分

 (Ⅱ)當直線MN的斜率不存在時,|MN|=4,

此時PQ的長即為橢圓長軸長,|PQ|=4,

從而.            --------8分

設直線的斜率為,則,直線的方程為:

直線PQ的方程為,

,消去可得

由拋物線定義可知:

 ----10分

,消去

從而,             --------12分

,

∵k>0,則

所以                       --------14分

所以四邊形面積的最小值為8.                    --------15分

22.解:(Ⅰ)

的極值點,∴

.

又當時,,從而的極值點成立。

                                                  --------4分

(Ⅱ)因為上為增函數(shù),

所以上恒成立.    --------6分

,則,

上為增函數(shù)不成立;

,由恒成立知。

所以上恒成立。

,其對稱軸為,

因為,所以,從而上為增函數(shù)。

所以只要即可,即

所以

又因為,所以.                    --------10分

(Ⅲ)若時,方程

可得

上有解

即求函數(shù)的值域.

法一:

∴當時,,從而在(0,1)上為增函數(shù);

時,,從而在(1,+∞)上為減函數(shù)。

,而可以無窮小。

的取值范圍為.                               --------15分

法二:

時,,所以上遞增;

時,,所以上遞減;

,∴令,.

∴當時,,所以上遞減;

時,,所以上遞增;

時,,所以上遞減;

又當時,,

時, ,則,且

所以的取值范圍為.                              --------15

 


同步練習冊答案