已知函數是定義在區(qū)間上的偶函數.且時. 查看更多

 

題目列表(包括答案和解析)

已知函數是定義在區(qū)間上的偶函數,且時,.

(1)求函數的解析式;

(2)若矩形ABCD的頂點A,B在函數的圖像上,頂點C,D在軸上,求矩形ABCD面積的最大值.

查看答案和解析>>

已知函數是定義在區(qū)間上的偶函數,且時, (1).求函數的解析式;(2).若矩形的頂點在函數的圖像上,頂點軸上,求矩形的面積的最大值。

查看答案和解析>>

已知函數是定義在區(qū)間上的偶函數,當時,是減函數,如果不等式成立,求實數的取值范圍.(  )

A.          B.             C.         D.(

 

查看答案和解析>>

已知函數是定義在區(qū)間上的偶函數,當時,是減函數,如果不等式成立,求實數的取值范圍.(  )

A. B. C. D.(

查看答案和解析>>

已知函數是定義在區(qū)間上的偶函數,且時,,

(1)求函數的解析式;

(2)若矩形的頂點在函數圖像上,頂點軸上,求矩形面積的最大值。

查看答案和解析>>

1――12   A  B  B  B  B  C  D  D  C  A  C  B

 

13、1            14、e             15、      16、①②④     

17、解上是增函數,

方程=x2 + (m ? 2 )x + 1 = 0的兩個根在0至3之間

<m≤0

依題意得:m的取值范圍是:<m≤-1或m>0

18、解:(1),

當a=1時 解集為

當a>1時,解集為,

當0<a<1時,解集為

(2)依題意知f(1)是f(x)的最小值,又f(1)不可能是端點值,則f(1)是f(x)的一個極小值,由,

19、解:(1)當所以f(-x)=-(-x)2-(-x)+5=-x2+x+5,

 

所以f(x)=

(2)由題意,不妨設A點在第一象限,坐標為(t,-t2-t+5)其中,

則S(t)=S ABCD=2t(-t2-t+5)=-2t3-2t2+10t.,

(舍去),t2=1.

,所以S(t)在上單調遞增,在上單調遞減,

所以當t=1時,ABCD的面積取得極大值也是S(t)在上的最大值。

從而當t=1時,矩形ABCD的面積取得最大值6.

20、解:

21、解:,

,要使在其定義域內為單調函數,只需內滿足:恒成立.

① 當時,,∵,∴,∴

內為單調遞減.  

② 當時,,對稱軸為, ∴.

只需,即,

內為單調遞增。

 ③當時,,對稱軸為.

只需,即恒成立.

綜上可得,.     

22、解:(Ⅰ)

       

        同理,令

        ∴f(x)單調遞增區(qū)間為,單調遞減區(qū)間為.

        由此可知

   (Ⅱ)由(I)可知當時,有,

        即.

    .

  (Ⅲ) 設函數

       

        ∴函數)上單調遞增,在上單調遞減.

        ∴的最小值為,即總有

        而

       

        即

        令

       

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


同步練習冊答案