設(shè).則的最小值為 . 查看更多

 

題目列表(包括答案和解析)

(不等式選講選做題)設(shè)x+y+z=2,則m=x2+2y2+z2的最小值為_______

查看答案和解析>>

(不等式選講選做題)設(shè)x+y+z=2,則m=x2+2y2+z2的最小值為_______

查看答案和解析>>

(不等式選講選做題)設(shè),則的最小值為_____________.

查看答案和解析>>

選做題(考生只能從中選做一題;兩道題都做的,只記第一題得分)
(A)(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,直線與圓的位置關(guān)系是          。
(B)(不等式選講選做題)給出以下幾個(gè)命題:
①若
②若, 則;
③若;
④設(shè)的最小值為8.其中是真命題的序號(hào)是_______________。

查看答案和解析>>

選做題(考生只能從中選做一題;兩道題都做的,只記第一題得分

(A)(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,直線與圓的位置關(guān)系是           。

(B)(不等式選講選做題)給出以下幾個(gè)命題:

, 則;

;

設(shè)的最小值為8.其中是真命題的序號(hào)是_______________。

 

查看答案和解析>>

 

一、選擇題(本大題共8小題,每小題5分,滿分40分.)

題號(hào)

1

2

3

4

5

6

7

8

選項(xiàng)

C

A

C

B

D

B

B

A

二、填空題(共7小題,計(jì)30分。其中第9、10、11、12小題必做;第13、14、15題選做兩題,若3題全做,按前兩題得分計(jì)算。)

9、 4       10、__10__(用數(shù)字作答).11、____。12、___0___。

13、      ;14、___8_____.15、   3   。

 

三、解答題(考生若有不同解法,請(qǐng)酌情給分。

16.解:(1)…………2分

……………………………………3分

………………………………………………5分

(2)…………………………7分

…………………………………9分

………………………………………10分

∴當(dāng)………………………………12分

 

17.解:⑴、記甲、乙兩人同時(shí)參加崗位服務(wù)為事件,那么,即甲、乙兩人同時(shí)參加崗位服務(wù)的概率是.……………………4分

⑵、記甲、乙兩人同時(shí)參加同一崗位服務(wù)為事件,

那么,…………………………………………………………6分

所以,甲、乙兩人不在同一崗位服務(wù)的概率是.………8分

⑶、隨機(jī)變量可能取的值為1,2.事件“”是指有兩人同時(shí)參加崗位服務(wù),則

.所以,

的分布列是:…………………………………………………………………… 10分

1

2

    ∴…………………………………………………………12分

 

18.

解:設(shè)2008年末汽車保有量為a1萬(wàn)輛,以后各年末汽車保有量依次為a2萬(wàn)輛,a3萬(wàn)輛,…,每年新增汽車x萬(wàn)輛。………………………………………………………………1分

a1=30,a2=a1×0.94+x,a3=a2×0.94+x=a1×0.942+x×0.94+x,…

故an=a1×0.94n-1+x(1+0.94+…+0.94n-2

.………………………………………………6分

(1):當(dāng)x=3萬(wàn)輛時(shí),an≤30

 則每年新增汽車數(shù)量控制在3萬(wàn)輛時(shí),汽車保有量能達(dá)到要求。……………9分

  (2):如果要求汽車保有量不超過(guò)60萬(wàn)輛,即an≤60(n=1,2,3,…)

則,

即.

對(duì)于任意正整數(shù)n,

因此,如果要求汽車保有量不超過(guò)60萬(wàn)輛,x≤3.6(萬(wàn)輛).………………13分

答:若每年新增汽車數(shù)量控制在3萬(wàn)輛時(shí),汽車保有量能達(dá)到要求;每年新增汽車不應(yīng)超過(guò)3.6萬(wàn)輛,則汽車保有量定能達(dá)到要求。………………………………………14分

 

19.解:(1)…………………………………………………………2分

由己知有實(shí)數(shù)解,∴,故…………………5分

(2)由題意是方程的一個(gè)根,設(shè)另一根為

則,∴……………………………………………………7分

∴,

當(dāng)時(shí),;當(dāng)時(shí),;

當(dāng)時(shí),

∴當(dāng)時(shí),有極大值,又,,

即當(dāng)時(shí),的量大值為  ………………………10分

∵對(duì)時(shí),恒成立,∴,

∴或………………………………………………………………13分

故的取值范圍是  ………………………………………14分

20.解:(1)作MP∥AB交BC于點(diǎn)P,NQ∥AB交BE于點(diǎn)Q,連結(jié)PQ,依題意可得MP∥NQ,且MP=NQ,即MNQP是平行四邊形,

∴MN=PQ.由已知,CM=BN=a,CB=AB=BE=1,

∴AC=BF=,  .

即CP=BQ=.

∴MN=PQ=

(0<a<).…………………………………5分

(2)由(Ⅰ),MN=,所以,當(dāng)a=時(shí),MN=.

即M、N分別移動(dòng)到AC、BF的中點(diǎn)時(shí),MN的長(zhǎng)最小,最小值為.………8分

(3)取MN的中點(diǎn)G,連結(jié)AG、BG,∵AM=AN,BM=BN,G為MN的中點(diǎn)

∴AG⊥MN,BG⊥MN,∠AGB即為二面角α的平面角,………………………11分

又AG=BG=,所以,由余弦定理有cosα=.

故所求二面角的余弦值為-.………………………………………………………14分

(注:本題也可用空間向量,解答過(guò)程略)

21.解:⑴、對(duì)任意的正數(shù)均有且.

,…………………………………………………4分

又是定義在上的單增函數(shù),.

當(dāng)時(shí),,.,.

當(dāng)時(shí),,

.,

為等差數(shù)列,,. ……………………………6分

⑵、假設(shè)存在滿足條件,即

對(duì)一切恒成立.

令,

,………………………10分

故,………………………12分

,單調(diào)遞增,,.

.……………………………………………………………14分

 

(考生若有不同解法,請(qǐng)酌情給分。

 

 

 

 

 


同步練習(xí)冊(cè)答案