已知m.n是兩條不重合的直線.α.β.γ是三個兩兩不重合的平面.給出下列四個命題.其中真命題是:①若則,②若則, ③若則, ④若m.n是異面直線.則 A.①和② B.①和③ C.③和④ D.①和④ 查看更多

 

題目列表(包括答案和解析)

給出以下五個結(jié)論:
(1)函數(shù)f(x)=
x-1
2x+1
的對稱中心是(-
1
2
,-
1
2
)
;
(2)若關(guān)于x的方程x-
1
x
+k=0
在x∈(0,1)沒有實數(shù)根,則k的取值范圍是k≥2;
(3)已知點P(a,b)與點Q(1,0)在直線2x-3y+1=0兩側(cè),當a>0且a≠1,b>0時,
b
a-1
的取值范圍為(-∞,-
1
3
)∪(
2
3
,+∞)
;
(4)若將函數(shù)f(x)=sin(2x-
π
3
)
的圖象向右平移?(?>0)個單位后變?yōu)榕己瘮?shù),則?的最小值是
12
;
(5)已知m,n是兩條不重合的直線,α,β是兩個不重合的平面,若m⊥α,n∥β且m⊥n,則α⊥β;其中正確的結(jié)論是:
 

查看答案和解析>>

給出以下五個結(jié)論:
(1)函數(shù)的對稱中心是;
(2)若關(guān)于x的方程在x∈(0,1)沒有實數(shù)根,則k的取值范圍是k≥2;
(3)已知點P(a,b)與點Q(1,0)在直線2x-3y+1=0兩側(cè),當a>0且a≠1,b>0時,的取值范圍為;
(4)若將函數(shù)的圖象向右平移ϕ(ϕ>0)個單位后變?yōu)榕己瘮?shù),則ϕ的最小值是
(5)已知m,n是兩條不重合的直線,α,β是兩個不重合的平面,若m⊥α,n∥β且m⊥n,則α⊥β;其中正確的結(jié)論是:   

查看答案和解析>>

給出以下五個結(jié)論:
(1)函數(shù)f(x)=
x-1
2x+1
的對稱中心是(-
1
2
,-
1
2
)
;
(2)若關(guān)于x的方程x-
1
x
+k=0
在x∈(0,1)沒有實數(shù)根,則k的取值范圍是k≥2;
(3)已知點P(a,b)與點Q(1,0)在直線2x-3y+1=0兩側(cè),當a>0且a≠1,b>0時,
b
a-1
的取值范圍為(-∞,-
1
3
)∪(
2
3
,+∞)
;
(4)若將函數(shù)f(x)=sin(2x-
π
3
)
的圖象向右平移?(?>0)個單位后變?yōu)榕己瘮?shù),則?的最小值是
12
;
(5)已知m,n是兩條不重合的直線,α,β是兩個不重合的平面,若m⊥α,nβ且m⊥n,則α⊥β;其中正確的結(jié)論是:______.

查看答案和解析>>

為了解某校高二學(xué)生的視力情況,隨機地抽查了該校100名高二學(xué)生的視力情況,得到頻率分布直方圖,如圖,由于不慎將部分數(shù)據(jù)丟失,但知道前4組的頻數(shù)成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設(shè)最大頻率為B,視力在4.6到5.0之間的學(xué)生數(shù)為F.
(1)求a,b的值
(2)設(shè)m、n表示參加抽查的某兩位同學(xué)的視力,且已知m,n∈[4.4,4.5)∪[5.1,5.2],求事件“|m-n|>0.1”的概率.

查看答案和解析>>

已知m,n表示兩條不同直線,α,β,γ表示不同平面,給出下列五個命題:
(1);(2);(3)
(4);(5)α⊥γ,β⊥γα∥β;
其中真命題的個數(shù)為
[     ]
A.0
B.1
C.2
D.3

查看答案和解析>>

 

一、選擇題(本大題共8小題,每小題5分,滿分40分.)

題號

1

2

3

4

5

6

7

8

選項

C

A

C

B

D

B

B

A

二、填空題(共7小題,計30分。其中第9、10、11、12小題必做;第13、14、15題選做兩題,若3題全做,按前兩題得分計算。)

9、 4       10、__10__(用數(shù)字作答).11、____。12、___0___。

13、      ;14、___8_____.15、   3   。

 

三、解答題(考生若有不同解法,請酌情給分!)

16.解:(1)…………2分

……………………………………3分

………………………………………………5分

(2)…………………………7分

…………………………………9分

………………………………………10分

∴當………………………………12分

 

17.解:⑴、記甲、乙兩人同時參加崗位服務(wù)為事件,那么,即甲、乙兩人同時參加崗位服務(wù)的概率是.……………………4分

⑵、記甲、乙兩人同時參加同一崗位服務(wù)為事件,

那么,…………………………………………………………6分

所以,甲、乙兩人不在同一崗位服務(wù)的概率是.………8分

⑶、隨機變量可能取的值為1,2.事件“”是指有兩人同時參加崗位服務(wù),則

.所以,

的分布列是:…………………………………………………………………… 10分

1

2

    ∴…………………………………………………………12分

 

18.

解:設(shè)2008年末汽車保有量為a1萬輛,以后各年末汽車保有量依次為a2萬輛,a3萬輛,…,每年新增汽車x萬輛!1分

a1=30,a2=a1×0.94+x,a3=a2×0.94+x=a1×0.942+x×0.94+x,…

故an=a1×0.94n-1+x(1+0.94+…+0.94n-2

.………………………………………………6分

(1):當x=3萬輛時,an≤30

 則每年新增汽車數(shù)量控制在3萬輛時,汽車保有量能達到要求!9分

  (2):如果要求汽車保有量不超過60萬輛,即an≤60(n=1,2,3,…)

則,

即.

對于任意正整數(shù)n,

因此,如果要求汽車保有量不超過60萬輛,x≤3.6(萬輛).………………13分

答:若每年新增汽車數(shù)量控制在3萬輛時,汽車保有量能達到要求;每年新增汽車不應(yīng)超過3.6萬輛,則汽車保有量定能達到要求。………………………………………14分

 

19.解:(1)…………………………………………………………2分

由己知有實數(shù)解,∴,故…………………5分

(2)由題意是方程的一個根,設(shè)另一根為

則,∴……………………………………………………7分

∴,

當時,;當時,;

當時,

∴當時,有極大值,又,,

即當時,的量大值為  ………………………10分

∵對時,恒成立,∴,

∴或………………………………………………………………13分

故的取值范圍是  ………………………………………14分

20.解:(1)作MP∥AB交BC于點P,NQ∥AB交BE于點Q,連結(jié)PQ,依題意可得MP∥NQ,且MP=NQ,即MNQP是平行四邊形,

∴MN=PQ.由已知,CM=BN=a,CB=AB=BE=1,

∴AC=BF=,  .

即CP=BQ=.

∴MN=PQ=

(0<a<).…………………………………5分

(2)由(Ⅰ),MN=,所以,當a=時,MN=.

即M、N分別移動到AC、BF的中點時,MN的長最小,最小值為.………8分

(3)取MN的中點G,連結(jié)AG、BG,∵AM=AN,BM=BN,G為MN的中點

∴AG⊥MN,BG⊥MN,∠AGB即為二面角α的平面角,………………………11分

又AG=BG=,所以,由余弦定理有cosα=.

故所求二面角的余弦值為-.………………………………………………………14分

(注:本題也可用空間向量,解答過程略)

21.解:⑴、對任意的正數(shù)均有且.

,…………………………………………………4分

又是定義在上的單增函數(shù),.

當時,,.,.

當時,,

.,

為等差數(shù)列,,. ……………………………6分

⑵、假設(shè)存在滿足條件,即

對一切恒成立.

令,

,………………………10分

故,………………………12分

,單調(diào)遞增,,.

.……………………………………………………………14分

 

(考生若有不同解法,請酌情給分。

 

 

 

 

 


同步練習(xí)冊答案