10.(理)設(shè).O為坐標(biāo)原點(diǎn).若A.B.C三點(diǎn)共線.則的最小值是 A.2 B.4 C.6 D.8(文)設(shè).O為坐標(biāo)原點(diǎn).且A.B.C三點(diǎn)共線.若∶=1∶2.則.的值分別是A. B. C. D. 查看更多

 

題目列表(包括答案和解析)

已知A、D分別為橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左頂點(diǎn)與上頂點(diǎn),橢圓的離心率e=
3
2
,F(xiàn)1、F2為橢圓的左、右焦點(diǎn),點(diǎn)P是線段AD上的任一點(diǎn),且
PF1
PF2
的最大值為1.
(1)求橢圓E的方程.
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且OA⊥OB(O為坐標(biāo)原點(diǎn)),若存在,求出該圓的方程;若不存在,請(qǐng)說明理由.
(3)設(shè)直線l與圓C:x2+y2=R2(1<R<2)相切于A1,且l與橢圓E有且僅有一個(gè)公共點(diǎn)B1,當(dāng)R為何值時(shí),|A1B1|取最大值?并求最大值.

查看答案和解析>>

已知A、D分別為橢圓E的左頂點(diǎn)與上頂點(diǎn),橢圓的離心率,FF2為橢圓的左、右焦點(diǎn),點(diǎn)P是線段AD上的任一點(diǎn),且的最大值為1 .

(1)求橢圓E的方程;

(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)AB,且OAOBO為坐標(biāo)原點(diǎn)),若存在,求出該圓的方程;若不存在,請(qǐng)說明理由;

(3)設(shè)直線l與圓相切于A1,且l與橢圓E有且僅有一個(gè)公共點(diǎn)B1,當(dāng)R為何值時(shí),|A1B1|取得最大值?并求最大值.

 

查看答案和解析>>

已知A、D分別為橢圓E:=1(a>b>0)的左頂點(diǎn)與上頂點(diǎn),橢圓的離心率e=,F(xiàn)1、F2為橢圓的左、右焦點(diǎn),點(diǎn)P是線段AD上的任一點(diǎn),且的最大值為1.
(1)求橢圓E的方程.
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且OA⊥OB(O為坐標(biāo)原點(diǎn)),若存在,求出該圓的方程;若不存在,請(qǐng)說明理由.
(3)設(shè)直線l與圓C:x2+y2=R2(1<R<2)相切于A1,且l與橢圓E有且僅有一個(gè)公共點(diǎn)B1,當(dāng)R為何值時(shí),|A1B1|取最大值?并求最大值.

查看答案和解析>>

已知A、D分別為橢圓E的左頂點(diǎn)與上頂點(diǎn),橢圓的離心率,F、F2為橢圓的左、右焦點(diǎn),點(diǎn)P是線段AD上的任一點(diǎn),且的最大值為1 .
(1)求橢圓E的方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)AB,且OAOBO為坐標(biāo)原點(diǎn)),若存在,求出該圓的方程;若不存在,請(qǐng)說明理由;
(3)設(shè)直線l與圓相切于A1,且l與橢圓E有且僅有一個(gè)公共點(diǎn)B1,當(dāng)R為何值時(shí),|A1B1|取得最大值?并求最大值.

查看答案和解析>>

在直角坐標(biāo)坐標(biāo)系中,已知一個(gè)圓心在坐標(biāo)原點(diǎn),半徑為2的圓,從這個(gè)圓上任意一點(diǎn)P向y軸作垂線段PP′,P′為垂足.
(1)求線段PP′中點(diǎn)M的軌跡C的方程.
(2)過點(diǎn)Q(一2,0)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過點(diǎn)(-
4
17
,0),且以言
a
=(0,1)
為方向向量的直線上一動(dòng)點(diǎn),滿足
ON
=
OA
+
OB
(O為坐標(biāo)原點(diǎn)),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線Z的方程;若不存在,說明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案