⑴證明:∵f=ax.∴f= 查看更多

 

題目列表(包括答案和解析)

已知二次函數(shù)yx2+ax+a-2.

(1)求證:不論a為何實數(shù),此函數(shù)圖象與x軸總有兩個交點.

(2)設a<0,當此函數(shù)圖象與x軸的兩個交點AB的距離為時,求出此二次函數(shù)的解析式.

(3)若(2)中的條件不變,在函數(shù)圖象上是否存在點P,使得△PAB的面積為,若存在求出P點坐標,若不存在請說明理由.

查看答案和解析>>

已知二次函數(shù)yx2+ax+a-2.

(1)求證:不論a為何實數(shù),此函數(shù)圖象與x軸總有兩個交點.

(2)設a<0,當此函數(shù)圖象與x軸的兩個交點AB的距離為時,求出此二次函數(shù)的解析式.

(3)若(2)中的條件不變,在函數(shù)圖象上是否存在點P,使得△PAB的面積為,若存在求出P點坐標,若不存在請說明理由.

查看答案和解析>>

已知拋物線y=x2+ax+a-2.

(1)證明:此拋物線與x軸總有兩個不同的交點;

(2)求這兩個交點間的距離(用關于a的表達式來表達);

(3)a取何值時,兩點間的距離最?

查看答案和解析>>

已知一元二次方程x2axa-2=0.

(1)求證:不論a為何實數(shù),此方程總有兩個不相等的實數(shù)根;

(2)設a<0,當二次函數(shù)yx2axa-2的圖象與x軸的兩個交點的距離為時,求出此二次函數(shù)的解析式;

(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于A、B兩點,在函數(shù)圖象上是否存在點P,使得△PAB的面積為,若存在求出P點坐標,若不存在請說明理由.

【解析】(1)判斷上述方程的根的情況,只要看根的判別式△=b2-4ac的值的符號就可以了,(2)根據(jù)二次函數(shù)圖象與x軸的兩個交點的距離公式解答即可.(3)是二次函數(shù)綜合應用問題和三角形的綜合應用

 

查看答案和解析>>

已知一元二次方程x2axa-2=0.
(1)求證:不論a為何實數(shù),此方程總有兩個不相等的實數(shù)根;
(2)設a<0,當二次函數(shù)yx2axa-2的圖象與x軸的兩個交點的距離為時,求出此二次函數(shù)的解析式;
(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于AB兩點,在函數(shù)圖象上是否存在點P,使得△PAB的面積為,若存在求出P點坐標,若不存在請說明理由.

查看答案和解析>>


同步練習冊答案