題目列表(包括答案和解析)
有以下三個(gè)不等式:
;
;
.
請(qǐng)你觀察這三個(gè)不等式,猜想出一個(gè)一般性的結(jié)論,并證明你的結(jié)論。
【解析】根據(jù)已知條件可知?dú)w納猜想結(jié)論為
下面給出運(yùn)用綜合法的思想求解和證明。解:結(jié)論為:. …………………5分
證明:
所以
在函數(shù)的圖象上有、、三點(diǎn),橫坐標(biāo)分別為其中.
⑴求的面積的表達(dá)式;
⑵求的值域.
【解析】由題意利用分割可先表示三角形ABC的面積,然后應(yīng)用對(duì)數(shù)運(yùn)算性質(zhì)及二次函數(shù)的性質(zhì)求解函數(shù)的最大值,屬于知識(shí)的簡(jiǎn)單綜合.
現(xiàn)有4個(gè)人去參加某娛樂(lè)活動(dòng),該活動(dòng)有甲、乙兩個(gè)游戲可供參加者選擇.為增加趣味性,約定:每個(gè)人通過(guò)擲一枚質(zhì)地均勻的骰子決定自己去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.
(Ⅰ)求這4個(gè)人中恰有2人去參加甲游戲的概率;
(Ⅱ)求這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;
(Ⅲ)用X,Y分別表示這4個(gè)人中去參加甲、乙游戲的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望.
【解析】依題意,這4個(gè)人中,每個(gè)人去參加甲游戲的概率為,去參加乙游戲的概率為.
設(shè)“這4個(gè)人中恰有i人去參加甲游戲”為事件
則.
(1)這4個(gè)人中恰有2人去參加甲游戲的概率
(2)設(shè)“這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)”為事件B,則.由于互斥,故
所以,這個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率為.
(3)的所有可能取值為0,2,4.由于互斥,互斥,故
所以的分布列是
0 |
2 |
4 |
|
P |
隨機(jī)變量的數(shù)學(xué)期望.
已知函數(shù)在與時(shí)都取得極值.
(1)求的值及函數(shù)的單調(diào)區(qū)間;www.7caiedu.cn
(2)若對(duì),不等式恒成立,求的取值范圍.
【解析】根據(jù)與是的兩個(gè)根,可求出a,b的值,然后利用導(dǎo)數(shù)確定其單調(diào)區(qū)間即可.
(2)此題本質(zhì)是利用導(dǎo)數(shù)其函數(shù)f(x)在區(qū)間[-1,2]上的最大值,然后利用,即可解出c的取值范圍.
為了比較注射A,B兩種藥物后產(chǎn)生的皮膚皰疹的面積,選200只家兔做實(shí)驗(yàn),將這200只家兔隨機(jī)地分成兩組。每組100只,其中一組注射藥物A,另一組注射藥物B。下表1和表2分別是注射藥物A和藥物B后的實(shí)驗(yàn)結(jié)果。(皰疹面積單位:)
表1:注射藥物A后皮膚皰疹面積的頻數(shù)分布表
皰疹面積 |
||||
頻數(shù) |
30 |
40 |
20 |
10 |
頻率/組距 |
|
|
|
|
表2:注射藥物B后皮膚皰疹面積的頻數(shù)分布表
皰疹面積 |
|||||
頻數(shù) |
10 |
25 |
20 |
30 |
15 |
頻率/組距 |
|
|
|
|
|
(1) 完成上面兩個(gè)表格及下面兩個(gè)頻率分布直方圖;
(2)完成下面列聯(lián)表,并回答能否有99.9%的把握認(rèn)為“注射藥物A后的皰疹面積與注射藥物B后的皰疹面積有差異”。 (結(jié)果保留4位有效數(shù)字)
|
皰疹面積小于70 |
皰疹面積不小于70 |
合計(jì) |
注射藥物A |
a= |
b= |
|
注射藥物B |
c= |
d= |
|
合計(jì) |
|
|
n= |
附:
P(K2≥k) |
0.10 |
0.05 |
0.025 |
0.010 |
0.001 |
k |
2.706 |
3.841 |
5.024 |
6.635 |
10.828 |
;
【解析】根據(jù)已知條件,得到列聯(lián)表中的a,b,c,d的值,代入已知的公式中
然后求解值,判定兩個(gè)分類(lèi)變量的相關(guān)性。
解:
由于K2≥10.828,所以有99.9%的把握認(rèn)為“注射藥物A后的皰疹面積與注射藥物B后的皰疹面積有差異”
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com