題目列表(包括答案和解析)
對(duì)于函數(shù)y=f(x),定義:若存在非零常數(shù)M、T,使函數(shù)f(x)對(duì)定義域內(nèi)的任意實(shí)數(shù)x,都滿足f(x+T)-f(x)=M,則稱函數(shù)y=f(x)是準(zhǔn)周期函數(shù),常數(shù)T稱為函數(shù)y=f(x)的一個(gè)準(zhǔn)周期.如:函數(shù)f(x)=2x+sinx是以T=2π為一個(gè)準(zhǔn)周期且M=4π的準(zhǔn)周期函數(shù).
(1)試判斷2π是否是函數(shù)f(x)=sinx的準(zhǔn)周期,說(shuō)明理由;
(2)證明函數(shù)f(x)=x+(-1)x(x∈Z)是準(zhǔn)周期函數(shù),并求出它的一個(gè)準(zhǔn)周期和相應(yīng)的M的值;
(3)請(qǐng)你給出一個(gè)準(zhǔn)周期函數(shù)(不同于題設(shè)和(2)中函數(shù)),指出它的一個(gè)準(zhǔn)周期和一些性質(zhì),并畫出它的大致圖像
對(duì)于函數(shù)f(x),定義:若存在非零常數(shù)M,T,使函數(shù)f(x)對(duì)定義域內(nèi)的任意x,都滿足f(x+T)-f(x)=M,則稱函數(shù)y=f(x)是準(zhǔn)周期函數(shù),非零常數(shù)T稱為函數(shù)y=f(x)的一個(gè)準(zhǔn)周期.如函數(shù)f(x)=2x+sinx是以T=2π為一個(gè)準(zhǔn)周期且M=4π的準(zhǔn)周期函數(shù).下列命題:
①2π是函數(shù)f(x)=sinx的一個(gè)準(zhǔn)周期;
②f(x)=x+(-1)x(x∈z)是以T=2為一個(gè)準(zhǔn)周期且M=2的準(zhǔn)周期函數(shù);
③函數(shù)f(x)=kx+b+Asin(wx+φ)(k≠0,w>0)是準(zhǔn)周期函數(shù);
④如果f(x)是一個(gè)一次函數(shù)與一個(gè)周期函數(shù)的和的形式,則f(x)一定是準(zhǔn)周期函數(shù);
⑤如果f(x+1)=-f(x)則函數(shù)h(x)=x+f(x)是以T=2為一個(gè)準(zhǔn)周期且M=4的準(zhǔn)周期函數(shù);其中的真命題是________.
一、選擇題
CCCBB BBDAB CA
二、填空題
13、 14、2 15、 16、③④
三、解答題
17.解:
建議評(píng)分標(biāo)準(zhǔn):每個(gè)三角函數(shù)“1”分。(下面的評(píng)分標(biāo)準(zhǔn)也僅供參考)
18.解:==--(2分)
而=
----------------------------------------------------------(2分)
且
-----(2分) 原式= -------------(2分)
19.解:(1)由已知得,所以即三角形為等腰三角形。--------------------------------------------------------------------------------------------(3分)
(2)兩式平方相加得,所以。------(3分)
若,則,所以,而
這與矛盾,所以---------------------------------------(2分)
20.解:化簡(jiǎn)得--------------------------------------------------(2分)
(1)最小正周期為;--------------------------------------------------------------(2分)
(2)單調(diào)遞減區(qū)間為-------------------------------(2分)
(3)對(duì)稱軸方程為-------------------------------------------(1分)
對(duì)稱中心為------------------------------------------------------(1分)
21.對(duì)方案Ⅰ:連接OC,設(shè),則,
而
當(dāng),即點(diǎn)C為弧的中點(diǎn)時(shí),矩形面積為最大,等于。
對(duì)方案Ⅱ:取弧EF的中點(diǎn)P,連接OP,交CD于M,交AB于N,設(shè)
如圖所示。
則,,
所以當(dāng),即點(diǎn)C為弧EF的四等分點(diǎn)時(shí),矩形面積為最大,等于。
,所以選擇方案Ⅰ。
22.解:(1)不是休閑函數(shù),證明略
(2)由題意得,有解,顯然不是解,所以存在非零常數(shù)T,使,
于是有,所以是休閑函數(shù)。
(3)顯然時(shí)成立;
當(dāng)時(shí),由題義,,由值域考慮,只有,
當(dāng)時(shí),成立,則;
當(dāng)時(shí),成立,則,綜合的的取值為。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com