存在非零常數(shù)T.滿足.則稱函數(shù)為休閑函數(shù). 查看更多

 

題目列表(包括答案和解析)

對(duì)于函數(shù)y=f(x),定義:若存在非零常數(shù)M、T,使函數(shù)f(x)對(duì)定義域內(nèi)的任意實(shí)數(shù)x,都滿足f(x+T)-f(x)=M,則稱函數(shù)y=f(x)是準(zhǔn)周期函數(shù),常數(shù)T稱為函數(shù)y=f(x)的一個(gè)準(zhǔn)周期.如函數(shù)f(x)=x+(-1)x(x∈Z)是以T=2為一個(gè)準(zhǔn)周期且M=2的準(zhǔn)周期函數(shù).
(1)試判斷2π是否是函數(shù)f(x)=sinx的準(zhǔn)周期,說(shuō)明理由;
(2)證明函數(shù)f(x)=2x+sinx是準(zhǔn)周期函數(shù),并求出它的一個(gè)準(zhǔn)周期和相應(yīng)的M的值;
(3)請(qǐng)你給出一個(gè)準(zhǔn)周期函數(shù)(不同于題設(shè)和(2)中函數(shù)),指出它的一個(gè)準(zhǔn)周期和一些性質(zhì),并畫出它的大致圖象.

查看答案和解析>>

對(duì)于函數(shù)y=f(x),x∈D,如果存在非零常數(shù)T,使對(duì)任意的x∈D都有f(x+t)=f(x)成立,就稱T為該函數(shù)的周期.請(qǐng)根據(jù)以上定義解答下列問(wèn)題:若y=f(x)是R上的奇函數(shù),且滿足f(x+5)=f(x),當(dāng)x∈(0,2)時(shí),f(x)=2x2,則f(2014)=______.

查看答案和解析>>

對(duì)于函數(shù)y=f(x),定義:若存在非零常數(shù)M、T,使函數(shù)f(x)對(duì)定義域內(nèi)的任意實(shí)數(shù)x,都滿足f(x+T)-f(x)=M,則稱函數(shù)y=f(x)是準(zhǔn)周期函數(shù),常數(shù)T稱為函數(shù)y=f(x)的一個(gè)準(zhǔn)周期.如:函數(shù)f(x)=2x+sinx是以T=2π為一個(gè)準(zhǔn)周期且M=4π的準(zhǔn)周期函數(shù).

(1)試判斷2π是否是函數(shù)f(x)=sinx的準(zhǔn)周期,說(shuō)明理由;

(2)證明函數(shù)f(x)=x+(-1)x(x∈Z)是準(zhǔn)周期函數(shù),并求出它的一個(gè)準(zhǔn)周期和相應(yīng)的M的值;

(3)請(qǐng)你給出一個(gè)準(zhǔn)周期函數(shù)(不同于題設(shè)和(2)中函數(shù)),指出它的一個(gè)準(zhǔn)周期和一些性質(zhì),并畫出它的大致圖像

查看答案和解析>>

對(duì)于函數(shù)f(x),定義:若存在非零常數(shù)M,T,使函數(shù)f(x)對(duì)定義域內(nèi)的任意x,都滿足f(x+T)-f(x)=M,則稱函數(shù)y=f(x)是準(zhǔn)周期函數(shù),非零常數(shù)T稱為函數(shù)y=f(x)的一個(gè)準(zhǔn)周期.如函數(shù)f(x)=2x+sinx是以T=2π為一個(gè)準(zhǔn)周期且M=4π的準(zhǔn)周期函數(shù).下列命題:

①2π是函數(shù)f(x)=sinx的一個(gè)準(zhǔn)周期;

②f(x)=x+(-1)x(x∈z)是以T=2為一個(gè)準(zhǔn)周期且M=2的準(zhǔn)周期函數(shù);

③函數(shù)f(x)=kx+b+Asin(wx+φ)(k≠0,w>0)是準(zhǔn)周期函數(shù);

④如果f(x)是一個(gè)一次函數(shù)與一個(gè)周期函數(shù)的和的形式,則f(x)一定是準(zhǔn)周期函數(shù);

⑤如果f(x+1)=-f(x)則函數(shù)h(x)=x+f(x)是以T=2為一個(gè)準(zhǔn)周期且M=4的準(zhǔn)周期函數(shù);其中的真命題是________

查看答案和解析>>

一、選擇題

CCCBB   BBDAB   CA

二、填空題

13、       14、2      15、    16、③④

三、解答題

17.解:

                 

                      

建議評(píng)分標(biāo)準(zhǔn):每個(gè)三角函數(shù)“1”分。(下面的評(píng)分標(biāo)準(zhǔn)也僅供參考)

18.解:==--(2分)

= 

*      ----------------------------------------------------------(2分)

   

  -----2分)     原式= -------------(2分)

19.解:(1)由已知得,所以即三角形為等腰三角形。--------------------------------------------------------------------------------------------(3分)

(2)兩式平方相加得,所以。------(3分)

,則,所以,而

這與矛盾,所以---------------------------------------(2分)

20.解:化簡(jiǎn)得--------------------------------------------------(2分)

(1)最小正周期為;--------------------------------------------------------------(2分)

(2)單調(diào)遞減區(qū)間為-------------------------------(2分)

(3)對(duì)稱軸方程為-------------------------------------------(1分)

對(duì)稱中心為------------------------------------------------------(1分)

21.對(duì)方案Ⅰ:連接OC,設(shè),則,

      而

當(dāng),即點(diǎn)C為弧的中點(diǎn)時(shí),矩形面積為最大,等于。

對(duì)方案Ⅱ:取弧EF的中點(diǎn)P,連接OP,交CD于M,交AB于N,設(shè)

如圖所示。

,,

所以當(dāng),即點(diǎn)C為弧EF的四等分點(diǎn)時(shí),矩形面積為最大,等于

,所以選擇方案Ⅰ。

22.解:(1)不是休閑函數(shù),證明略

(2)由題意得,有解,顯然不是解,所以存在非零常數(shù)T,使

于是有,所以是休閑函數(shù)。

(3)顯然時(shí)成立;

當(dāng)時(shí),由題義,,由值域考慮,只有,

當(dāng)時(shí),成立,則;

當(dāng)時(shí),成立,則,綜合的的取值為。

 

 

 


同步練習(xí)冊(cè)答案