1.( ) 查看更多

 

題目列表(包括答案和解析)

(Ⅰ)已知函數(shù)f(x)=
x
x+1
.?dāng)?shù)列{an}滿足:an>0,a1=1,且
an+1
=f(
an
)
,記數(shù)列{bn}的前n項和為Sn,且Sn=
2
2
[
1
an
+(
2
+1)n]
.求數(shù)列{bn}的通項公式;并判斷b4+b6是否仍為數(shù)列{bn}中的項?若是,請證明;否則,說明理由.
(Ⅱ)設(shè){cn}為首項是c1,公差d≠0的等差數(shù)列,求證:“數(shù)列{cn}中任意不同兩項之和仍為數(shù)列{cn}中的項”的充要條件是“存在整數(shù)m≥-1,使c1=md”.

查看答案和解析>>

(Ⅰ)在如圖的坐標(biāo)系中作出同時滿足約束條件:x+y-1≥0;x-y+1≥0;4x+y-2≥0的可行性區(qū)域;
(Ⅱ)若實數(shù)x,y滿足(Ⅰ)中約束條件,求目標(biāo)函數(shù)
x+yx
的取值范圍.精英家教網(wǎng)

查看答案和解析>>

(Ⅰ)①證明兩角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;②由Cα+β推導(dǎo)兩角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.
(Ⅱ)已知△ABC的面積S=
1
2
,
AB
AC
=3
,且cosB=
3
5
,求cosC.

查看答案和解析>>

(Ⅰ)①證明兩角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;
②由Cα+β推導(dǎo)兩角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.
(Ⅱ)已知cosα=-
4
5
,α∈(π,
3
2
π),tanβ=-
1
3
,β∈(
π
2
,π),cos(α+β)
,求cos(α+β).

查看答案和解析>>

20、(Ⅰ)求y=4x-2x+1的值域;
(Ⅱ)關(guān)于x的方程4x-2x+1+a=0有解,求實數(shù)a的取值范圍.

查看答案和解析>>

一、選擇題

CCCBB   BBDAB   CA

二、填空題

13、       14、2      15、    16、③④

三、解答題

17.解:

                 

                      

建議評分標(biāo)準(zhǔn):每個三角函數(shù)“1”分。(下面的評分標(biāo)準(zhǔn)也僅供參考)

18.解:==--(2分)

= 

*      ----------------------------------------------------------(2分)

   

  -----2分)     原式= -------------(2分)

19.解:(1)由已知得,所以即三角形為等腰三角形。--------------------------------------------------------------------------------------------(3分)

(2)兩式平方相加得,所以。------(3分)

,則,所以,而

這與矛盾,所以---------------------------------------(2分)

20.解:化簡得--------------------------------------------------(2分)

(1)最小正周期為;--------------------------------------------------------------(2分)

(2)單調(diào)遞減區(qū)間為-------------------------------(2分)

(3)對稱軸方程為-------------------------------------------(1分)

對稱中心為------------------------------------------------------(1分)

21.對方案Ⅰ:連接OC,設(shè),則,

      而

當(dāng),即點C為弧的中點時,矩形面積為最大,等于

對方案Ⅱ:取弧EF的中點P,連接OP,交CD于M,交AB于N,設(shè)

如圖所示。

,,

所以當(dāng),即點C為弧EF的四等分點時,矩形面積為最大,等于

,所以選擇方案Ⅰ。

22.解:(1)不是休閑函數(shù),證明略

(2)由題意得,有解,顯然不是解,所以存在非零常數(shù)T,使,

于是有,所以是休閑函數(shù)。

(3)顯然時成立;

當(dāng)時,由題義,,由值域考慮,只有,

當(dāng)時,成立,則

當(dāng)時,成立,則,綜合的的取值為。

 

 

 


同步練習(xí)冊答案