題目列表(包括答案和解析)
解:(1)由拋物線C1:得頂點(diǎn)P的坐標(biāo)為(2,5)………….1分
∵點(diǎn)A(-1,0)在拋物線C1上∴.………………2分
(2)連接PM,作PH⊥x軸于H,作MG⊥x軸于G..
∵點(diǎn)P、M關(guān)于點(diǎn)A成中心對稱,
∴PM過點(diǎn)A,且PA=MA..
∴△PAH≌△MAG..
∴MG=PH=5,AG=AH=3.
∴頂點(diǎn)M的坐標(biāo)為(,5).………………………3分
∵拋物線C2與C1關(guān)于x軸對稱,拋物線C3由C2平移得到
∴拋物線C3的表達(dá)式. …………4分
(3)∵拋物線C4由C1繞x軸上的點(diǎn)Q旋轉(zhuǎn)180°得到
∴頂點(diǎn)N、P關(guān)于點(diǎn)Q成中心對稱.
由(2)得點(diǎn)N的縱坐標(biāo)為5.
設(shè)點(diǎn)N坐標(biāo)為(m,5),作PH⊥x軸于H,作NG⊥x軸于G,作PR⊥NG于R.
∵旋轉(zhuǎn)中心Q在x軸上,
∴EF=AB=2AH=6.
∴EG=3,點(diǎn)E坐標(biāo)為(,0),H坐標(biāo)為(2,0),R坐標(biāo)為(m,-5).
根據(jù)勾股定理,得
①當(dāng)∠PNE=90º時,PN2+ NE2=PE2,
解得m=,∴N點(diǎn)坐標(biāo)為(,5)
②當(dāng)∠PEN=90º時,PE2+ NE2=PN2,
解得m=,∴N點(diǎn)坐標(biāo)為(,5).
③∵PN>NR=10>NE,∴∠NPE≠90º ………7分
綜上所得,當(dāng)N點(diǎn)坐標(biāo)為(,5)或(,5)時,以點(diǎn)P、N、E為頂點(diǎn)的三角形是直角三角形.…………………………………………………………………………………8分
解決問題:如圖,已知正方形ABCD,點(diǎn)E是邊AB上一動點(diǎn),點(diǎn)F在AB邊或其延長線上,點(diǎn)G在邊AD上.連結(jié)ED,F(xiàn)G,交點(diǎn)為H.
【小題1】如圖1,若AE=BF=GD,請直接寫出∠EHF= ▲ °;
【小題2】如圖2,若EF =CD,GD=AE,設(shè)∠EHF=α.請判斷當(dāng)點(diǎn)E在AB上運(yùn)動時, ∠EHF的大小是否發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,請求出tanα.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com