由2(1-)+ 得=1 由于=1+>1.舍去. 查看更多

 

題目列表(包括答案和解析)

行駛中的汽車,在剎車后由于慣性的作用,要繼續(xù)向前滑行一段距離后才會停下,這段距離叫剎車距離.為測定某種型號汽車的剎車性能,對這種型號的汽車在國道公路上進行測試,測試所得數(shù)據(jù)如下表.根據(jù)表中的數(shù)據(jù)作散點圖,模擬函數(shù)可以選用二次函數(shù)或函數(shù)y=abx+c(其中a,b,c為常數(shù)).某人用(0,0),(10,1.1),(30,6.9)求出相關系數(shù),用(60,24.8)驗證,請問用以上哪個函數(shù)作為模擬函數(shù)較好,并說明理由.在一次由這種型號的汽車發(fā)生的交通事故中,測得剎車距離為14.4m,問汽車在剎車時的速度大概是多少?(其中用函數(shù)y=abx+c擬合,經(jīng)運算得到函數(shù)式為y=1.3×1.85
x
10
-1.3
,且1.856=40.1)
剎車時車速v/km/h 10 15 30 50 60 80
剎車距離s/m 1.1 2.1 6.9 17.5 24.8 42.5  

查看答案和解析>>

行駛中的汽車,在剎車后由于慣性的作用,要繼續(xù)向前滑行一段距離后才會停下,這段距離叫剎車距離。為測定某種型號汽車的剎車性能,對這種型號的汽車在國道公路上進行測試,測試所得數(shù)據(jù)如下表。根據(jù)表中的數(shù)據(jù)作散點圖,模擬函數(shù)可以選用二次函數(shù)或函數(shù)(其中為常數(shù)).某人用(0,0),(10,1.1),(30,6.9)求出相關系數(shù),用(60,24.8)驗證,請問用以上哪個函數(shù)作為模擬函數(shù)較好,并說明理由.在一次由這種型號的汽車發(fā)生的交通事故中,測得剎車距離為14.4m,問汽車在剎車時的速度大概是多少?

(其中用函數(shù)擬合,經(jīng)運算得到函數(shù)式為,且

 

剎車時車速v/km/h

10

15

30

50

60

80

剎車距離s/m

1.1

2.1

6.9

17.5

24.8

42.5

 

 

查看答案和解析>>

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

 

【解析】解法一:如圖,以點A為原點建立空間直角坐標系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得,于是,所以

(2) ,設平面PCD的法向量,

,即.不防設,可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設點E的坐標為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

已知數(shù)列是各項均不為0的等差數(shù)列,公差為d,為其前n項和,且滿足,.數(shù)列滿足,,為數(shù)列的前n項和.

(1)求數(shù)列的通項公式和數(shù)列的前n項和;

(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請說明理由.

【解析】第一問利用在中,令n=1,n=2,

   即      

解得,, [

時,滿足,

,

第二問,①當n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

第三問

     若成等比數(shù)列,則

即.

,可得,即

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

時,滿足,

,

(2)①當n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

綜合①、②可得的取值范圍是

(3)

     若成等比數(shù)列,則,

即.

,可得,即

,且m>1,所以m=2,此時n=12.

因此,當且僅當m=2, n=12時,數(shù)列中的成等比數(shù)列

 

查看答案和解析>>

某地區(qū)對12歲兒童瞬時記憶能力進行調查.瞬時記憶能力包括聽覺記憶能力與視覺記憶能力.某班學生共有40人,下表為該班學生瞬時記憶能力的調查結果.例如表中聽覺記憶能力為中等,且視覺記憶能力偏高的學生為3人.

     視覺         [來源:]

視覺記憶能力

偏低

中等

偏高

超常

聽覺

記憶

能力

偏低

0

7

5

1

中等

1

8

3

偏高

2

0

1

超常

0

2

1

1

由于部分數(shù)據(jù)丟失,只知道從這40位學生中隨機抽取一個,視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的概率為

(I)試確定、的值;

(II)從40人中任意抽取3人,求其中至少有一位具有聽覺記憶能力或視覺記憶能力超常的學生的概率;

(III)從40人中任意抽取3人,設具有聽覺記憶能力或視覺記憶能力偏高或超常的學生人數(shù)為,求隨機變量的數(shù)學期望

【解析】1)中由表格數(shù)據(jù)可知,視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的學生共有(10+a)人.記“視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上”為事件A,則P(A)=(10+a)/40=2/5,解得a=6.……………2分

所以.b=40-(32+a)=40-38=2答:a的值為6,b的值為2.………………3分

(2)中由表格數(shù)據(jù)可知,具有聽覺記憶能力或視覺記憶能力超常的學生共有8人.

方法1:記“至少有一位具有聽覺記憶能力或視覺記憶能力超常的學生”為事件B,

則“沒有一位具有聽覺記憶能力或視覺記憶能力超常的學生”為事件

(3)中由于從40位學生中任意抽取3位的結果數(shù)為,其中具有聽覺記憶能力或視覺記憶能力偏高或超常的學生共24人,從40位學生中任意抽取3位,其中恰有k位具有聽覺記憶能力或視覺記憶能力偏高或超常的結果數(shù)為,………………………7分

所以從40位學生中任意抽取3位,其中恰有k位具有聽覺記憶能力或視覺記憶能力偏高或超常的概率為,k=0,1,2,3

 

查看答案和解析>>


同步練習冊答案