題目列表(包括答案和解析)
(本小題15分)
先閱讀下列不等式的證法,再解決后面的問(wèn)題:已知且,求證
證明:構(gòu)造函數(shù)因?yàn)閷?duì)一切,恒有,所以4-8,從而
(1)若,且,請(qǐng)寫(xiě)出上述結(jié)論的推廣式;
(2)參考上述證法,對(duì)你的結(jié)論加以證明;
(3)若,求證.[
(本小題15分)
先閱讀下列不等式的證法,再解決后面的問(wèn)題:已知且,求證
證明:構(gòu)造函數(shù)因?yàn)閷?duì)一切,恒有,所以4-8,從而
(1)若,且,請(qǐng)寫(xiě)出上述結(jié)論的推廣式;
(2)參考上述證法,對(duì)你的結(jié)論加以證明;
(3)若,求證.[
(本小題10分)函數(shù)是偶函數(shù).
(1)求;
(2)將函數(shù)的圖像先縱坐標(biāo)不變,橫坐標(biāo)縮短為原來(lái)的倍,再向左平移個(gè)單位,然后向上平移1個(gè)單位得到的圖像,若關(guān)于的方程有且只有兩個(gè)不同的根,求的范圍.
(本小題12分)某中學(xué)的高二(1)班男同學(xué)有名,女同學(xué)有名,老師按照分層抽樣的方法組建了一個(gè)人的課外興趣小組.
(Ⅰ)求某同學(xué)被抽到的概率及課外興趣小組中男、女同學(xué)的人數(shù);
(Ⅱ)經(jīng)過(guò)一個(gè)月的學(xué)習(xí)、討論,這個(gè)興趣小組決定選出兩名同學(xué)做某項(xiàng)實(shí)驗(yàn),方法是先從小組里選出名同學(xué)做實(shí)驗(yàn),該同學(xué)做完后,再?gòu)男〗M內(nèi)剩下的同學(xué)中選一名同學(xué)做實(shí)驗(yàn),求選出的兩名同學(xué)中恰有一名女同學(xué)的概率;
(Ⅲ)試驗(yàn)結(jié)束后,第一次做試驗(yàn)的同學(xué)得到的試驗(yàn)數(shù)據(jù)為,第二次做試驗(yàn)的同學(xué)得到的試驗(yàn)數(shù)據(jù)為,請(qǐng)問(wèn)哪位同學(xué)的實(shí)驗(yàn)更穩(wěn)定?并說(shuō)明理由.
(本小題8分)
數(shù)列滿足,先計(jì)算前4項(xiàng)后,猜想的表達(dá)式,并用數(shù)學(xué)歸納法證明.
一、填空題
1. ;2. 110;3. ;4. ①③;5. ③;6. 10.5億元;
7. 81; 8. ;
9. 一條邊的平方等于其它兩條邊平方和的三角形是直角三角形;
10. ;
11. ;12. ;13. ;14. 60
二、解答題
15. 解:(1)由可得m=1; …………4分
(2)由可得m=0; …………8分
(3)由可得m=2; …………12分
綜上:當(dāng)m=1時(shí),復(fù)數(shù)是0;當(dāng)m=1時(shí),復(fù)數(shù)是純虛數(shù);當(dāng)m=2,復(fù)數(shù)是.
…………14分
16. 解:(Ⅰ); …………4分
(Ⅱ)是以4為其一個(gè)周期的周期函數(shù). …………6分
∵, …………10分
∴, …………12分
所以是周期函數(shù),其中一個(gè)周期為4. …………14分
17. 解:(1)只有一個(gè)盒子空著,則有且只有一個(gè)盒子中投放兩個(gè)球,另外3只盒子中各投放一個(gè)球,先將球分成2,1,1,1的四組,共有種分法, …………4分
再投放到五個(gè)盒子的其中四個(gè)盒子中,共有種放法,所以滿足條件的投放方法共有=1200(種); …………8分
(2)五個(gè)球投放到五個(gè)盒子中,每個(gè)盒子中只有一個(gè)球,共有種投放方法,
而球的編號(hào)與盒子編號(hào)全相同的情況只有一種,所以球的編號(hào)與盒子編號(hào)不全相同的投放方法共有=119(種). …………14分
18. 證明:記=…(,>1), …………2分
(1)當(dāng)=2時(shí),>,不等式成立; …………6分
(2)假設(shè)=(,≥2)時(shí),不等式成立, …………8分
即=…>,
則當(dāng)=+1時(shí),有=+>+=
>= …………12分
∴當(dāng)=+1時(shí),不等式也成立. …………14分
綜合(1),(2)知,原不等式對(duì)任意的(>1)都成立. …………16分
19. 解:(Ⅰ)由=10,=20,=5.2,
可得, …………4分
∴年推銷金額與工作年限之間的相關(guān)系數(shù)約為0.98. …………6分
(Ⅱ) 由(Ⅰ)知,>,
∴可以認(rèn)為年推銷金額與工作年限之間具有較強(qiáng)的線性相關(guān)關(guān)系. …………8分
設(shè)所求的線性回歸方程為,則. …………10分
∴年推銷金額關(guān)于工作年限的線性回歸方程為. …………12分
(Ⅲ) 由(Ⅱ) 可知,當(dāng)時(shí), = 0.5×11+ 0.4 = 5.9萬(wàn)元,
∴可以估計(jì)第6名推銷員的年推銷金額為5.9萬(wàn)元. …………16分
20. 解:(1)設(shè)(), …………2分
則集合{?}={?},
故表示以(0,3)為圓心,2為半徑的圓; …………6分
設(shè)(),()且,…………8分
則 …………10分
將代入得,
故表示以(-6,0)為圓心,4為半徑的圓; …………12分
(2)表示分別在圓上的兩個(gè)動(dòng)點(diǎn)間的距離,又圓心距>2+4,
故最大值為6+3,最小值為3-6. …………16分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com