題目列表(包括答案和解析)
(1)求y關(guān)于x的函數(shù)表達(dá)式y(tǒng)=f(x);
(2)當(dāng)x∈[0,]時(shí),f(x)的最大值為3,求m的值;若此時(shí)函數(shù)y=f(x)的圖象可由函數(shù)y=2sin2x的圖象按向量c=(h,k)(|h|<)平移后得到,求實(shí)數(shù)h,k的值.
3 |
OM |
ON |
π |
2 |
m |
m |
3 |
OM |
ON |
π |
2 |
m |
m |
(Ⅰ)求y關(guān)于x的函數(shù)表達(dá)式y(tǒng)=f(x);
(Ⅱ)當(dāng)x∈[0,]時(shí),f(x)的最大值為3,求m的值;若此時(shí)函數(shù)y=f(x)的圖象可由函數(shù)y=2sin2x的圖象按向量c=(h,k)(|h|<)平移后得到,求實(shí)數(shù)h,k的值.
一、選擇題
題號(hào)
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
A
C
D
C
C
A
C
D
B
B
D
二、填空題
13.3 14.-a、b、-c 15.18 16.(1)(2)
三、解答題
17.解:(1)∵夾角為x,∴cosx=6
S=sin∠ABC=sin(π-x)=sinx …………2分
∴ …………4分
x∈[0,π],∴x∈[] …………6分
(2)f(x)==cos4x×1+(-sinx)(sin3x+2sin2x)=cos4x-sin4x-2sinxcosx
=(cos2x+sin2x)(cos2x-sin2x)-sin2x=cos2x-sin2x=2cos(2x+) …………9分
∵
∴f(x)∈[-] …………12分
18.解:(1)從平臺(tái)達(dá)到第一階每步只能上一階,因此概率P1= …………2分
從平臺(tái)到達(dá)第二階有二種走法:走兩步,或一步到達(dá),
故概率為P2=×+ …………5分
(2)該人走了五步,共上的階數(shù)ξ取值為5,6,7,8,9,10
ξ的分布列為:(6分)
ξ
5
6
7
8
9
10
P
()5
Eξ=5×()5+6× …………12分
19.(1)證:連結(jié)A1D、A1B
由已知可得△AA1B和△A1AD為全等的正三角形.
∴A1B=A1D∴A1O⊥BD
又AB=AD,BD=BD
∴△ABD≌△A1BD∴A1O=AO=
又AA1=2∴A1O⊥AO
∴A1O⊥平面ABCD …………4分
(2)過(guò)C1作C1H⊥AC交AC的延長(zhǎng)線于H,則C1H⊥平面ABCD
連結(jié)BH,則∠C1BH為BC1與平面ABCD所成的角.
∵OH=A1C1=2,BO=,∴BH=
∴tan∠C1BH=∠C1BH=arctan …………8分
((2)也可用向量法求解)
(3)連結(jié)OO1,易知AA1∥OO1,面AA1O1O⊥面BDD1B1
作A1G⊥OO1,則A1G為AA1與面B1D1DB的距離.
由(1)知A1O=AO=A1O1,A1O⊥A1O1
∴A1G==1 …………12分
((3)也可用向量法或等積法求解)
20.(1)y2=,∵y2>0,x>0,∴x>3又y<0
∴y=- …………4分
(2)x=∴y=f-1(x)= (x<0) …………7分
設(shè)(x0,y0)為y=f-1(x)圖象上任一點(diǎn).
=
故- …………12分
21.(1),當(dāng)n=時(shí),
∴c= …………3分
(2)∵直線x=∴P點(diǎn)在以F為焦點(diǎn),x=為準(zhǔn)線的橢圓上 …………5分
設(shè)P(x,y)則點(diǎn)B(0,-1)代入,解得a=
∴曲線方程為 …………7分
(3)設(shè)l:y=kx+m(k≠0)與聯(lián)立,消去y得:(1+3k2)x2+6kmx+3m2-3=0,
△>0得:m2<3k2+1 …………9分
設(shè)M(x1,y1),N(x2,y2),MN中點(diǎn)A(x0,y0),由,
由韋達(dá)定理代入KBA=-,可得到m=
∴k2-1<0,∵k≠0,∴-1<k<0或0<k<1 …………11分
即存在k∈(-1,0)∪(0.1)使l與曲線Q交于兩個(gè)不同的點(diǎn)M、N
使 …………12分
22.(1)由于數(shù)列{an}的倒均數(shù),Vn=
得: …………2分
當(dāng)n≥2時(shí),所以,又當(dāng)n=1時(shí),a1=也適合上式.
∴an= …………6分
(2)由于{bn}是公比為q=的等比數(shù)列,∴{}為公比為2的等比數(shù)列,其倒均數(shù)
Vn=,不等式Vn< …………8分
若b1<0,則2n-1>8n,令f(x)=2x-8x-1,則f(x)=2xln2-8,當(dāng)x≤3時(shí),f(x)<0,當(dāng)x>4時(shí),f(x)>0,∴f(x)當(dāng)x≥4時(shí)是增函數(shù)又f(x)=-9<0,f(6)=15>0,故當(dāng)n≥6時(shí),f(n)>0,即2n-1>8n恒成立,因此,存在正整數(shù)m,使得當(dāng)n≥m,n∈N*時(shí),Vn<恒成立,且m的最小值為6……12分
若b1>0,則上式即為2n-1<8n,顯然當(dāng)n≤5時(shí)成立,而n>5時(shí)不成立,故不存在正整數(shù)m,使n≥m(n∈N*)時(shí),Vn=成立 …………14分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com