題目列表(包括答案和解析)
證明不等式:若x>0,則ln(1+x)>
已知集合D = {(x1,x2)|x1>0,x2>0,x1 + x2 = k,k為正常數(shù)}.
(Ⅰ)設u = x1x2,(x1,x2) ∈D,求u的取值范圍T;
(Ⅱ)求證:當k≥1時,不等式對任意(x1,x2) ∈D恒成立;
(Ⅲ)求使不等式對任意(x1,x2) ∈D恒成立的k的范圍.
設A={x||x-1|<2},B={x|>0},則A∩B等于
A.{x|-1<x<3} B.{x|x<0或x>2}
C.{x|-1<x<0} D.{x|-1<x<0或2<x<3}
本題考查含絕對值不等式、分式不等式的解法及集合的運算.在進行集合運算時,把解集標在數(shù)軸上,借助圖形可直觀求解.
(本小題滿分14分)
已知函數(shù)f (x)=ex,g(x)=lnx,h(x)=kx+b.
(1)當b=0時,若對x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求實數(shù)k的取值范圍;
(2)設h(x)的圖象為函數(shù)f (x)和g(x)圖象的公共切線,切點分別為(x1, f (x1))和(x2, g(x2)),其中x1>0.
①求證:x1>1>x2;
②若當x≥x1時,關于x的不等式ax2-x+xe+1≤0恒成立,求實數(shù)a的取值范圍.
(2005年湖南理科高考題14分)
自然狀態(tài)下的魚類是一種可再生資源,為持續(xù)利用這一資源,需從宏觀上考察其再生能力及捕撈強度對魚群總量的影響.用xn表示某魚群在第n年年初的總量,n∈N*,且x1>0.不考慮其它因素,設在第n年內(nèi)魚群的繁殖量及捕撈量都與xn成正比,死亡量與xn2成正比,這些比例系數(shù)依次為正常數(shù)a,b,c.
(1)求xn+1與xn的關系式;
(2)猜測:當且僅當x1,a,b,c滿足什么條件時,每年年初魚群的總量保持不變?(不要求證明)
(3)設a=2,c=1,為保證對任意x1∈(0,2),都有xn>0,n∈N*,則捕撈強度b的最大允許值是多少?證明你的結(jié)論.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com