解:(I)“油罐被引爆 的事件為事件A.其對立事件為.則P()=C----4分 查看更多

 

題目列表(包括答案和解析)

學校要用三輛車從北湖校區(qū)把教師接到文廟校區(qū),已知從北湖校區(qū)到文廟校區(qū)有兩條公路,汽車走公路①堵車的概率為,不堵車的概率為;汽車走公路②堵車的概率為,不堵車的概率為,若甲、乙兩輛汽車走公路①,丙汽車由于其他原因走公路②,且三輛車是否堵車相互之間沒有影響。(I)若三輛車中恰有一輛車被堵的概率為,求走公路②堵車的概率;(Ⅱ)在(I)的條件下,求三輛車中被堵車輛的個數(shù)的分布列和數(shù)學期望。

【解析】第一問中,由已知條件結合n此獨立重復試驗的概率公式可知,得

第二問中可能的取值為0,1,2,3  ,       

 , 

從而得到分布列和期望值

解:(I)由已知條件得 ,即,則的值為

 (Ⅱ)可能的取值為0,1,2,3  ,       

 , 

   的分布列為:(1分)

 

0

1

2

3

 

 

 

 

所以 

 

查看答案和解析>>

在一次抗洪搶險中,準備用射擊的方法引爆從河上游漂流而下的一只巨大汽油罐.已知只有5發(fā)子彈備用,且首次命中只能使汽油流出,再次命中才能引爆成功.每次射擊命中的概率都是
23
,每次命中與否互相獨立.
(Ⅰ)求恰用3發(fā)子彈就將油罐引爆的概率;
(Ⅱ)求油罐被引爆的概率.

查看答案和解析>>

在汶川大地震后對唐家山堰塞湖的搶險過程中,武警官兵準備用射擊的方法引爆從湖壩上游漂流而下的一個巨大的汽油罐.已知只有5發(fā)子彈,第一次命中只能使汽油流出,第二次命中才能引爆.每次射擊是相互獨立的,且命中的概率都是
23

(Ⅰ)求油罐被引爆的概率;
(Ⅱ)如果引爆或子彈打光則停止射擊,設射擊次數(shù)為ξ.求ξ的分布列及數(shù)學期望E(ξ).( 結果用分數(shù)表示)

查看答案和解析>>

(2012•泰安一模)為了增強學生的環(huán)境意識,某中學隨機抽取了50名學生舉行了一次環(huán)保知識競賽,本次競賽的成績(得分均為整數(shù),滿分100分)整理,制成下表:
成績 [40,50) [50,60) [60,70) [70,80) [80,90) [90,100)
頻數(shù) 2 3 14 15 12 4
(I)作出被抽查學生成績的頻率分布直方圖;
(II)若從成績在[40,50)中選一名學生,從成績在[90,100)中選出2名學生,共3名學生召開座談會,求[40,50)組中學生A1和[90,100)組中學生B1同時被選中的概率?

查看答案和解析>>

用射擊的方法引爆裝有汽油的大汽油罐,已知只有5發(fā)子彈備用,且首次命中只能使汽油流出,再次命中才能引爆成功(可以是兩次不連續(xù)的命中),每次射擊命中率都是
23
,每次命中與否互相獨立.
(1)求油罐被引爆的概率.
(2)如果引爆或子彈打光則停止射擊,設射擊次數(shù)為ξ,求ξ的分布列及ξ的數(shù)學期望.

查看答案和解析>>


同步練習冊答案