(2)是否存在最小的正整數(shù)k.使不等式對(duì)于恒成立?求出最小的正整數(shù)k.若不存在說(shuō)明理由, 20070329 查看更多

 

題目列表(包括答案和解析)

給定項(xiàng)數(shù)為的數(shù)列,其中.

若存在一個(gè)正整數(shù),若數(shù)列中存在連續(xù)的k項(xiàng)和該數(shù)列中另一個(gè)連續(xù)的k項(xiàng)恰好按次序?qū)?yīng)相等,則稱(chēng)數(shù)列是“k階可重復(fù)數(shù)列”,

例如數(shù)列

因?yàn)?img width=67 height=21 src="http://thumb.zyjl.cn/pic1/1899/sx/182/363182.gif">與按次序?qū)?yīng)相等,所以數(shù)列是“4階可重復(fù)數(shù)列”.

(Ⅰ)分別判斷下列數(shù)列

      ②

是否是“5階可重復(fù)數(shù)列”?如果是,請(qǐng)寫(xiě)出重復(fù)的這5項(xiàng);

(Ⅱ)若數(shù)為的數(shù)列一定是 “3階可重復(fù)數(shù)列”,則的最小值是多少?說(shuō)明理由;

(III)假設(shè)數(shù)列不是“5階可重復(fù)數(shù)列”,若在其最后一項(xiàng)后再添加一項(xiàng)0或1,均可使新數(shù)列是“5階可重復(fù)數(shù)列”,且,求數(shù)列的最后一項(xiàng)的值.

查看答案和解析>>

給定項(xiàng)數(shù)為的數(shù)列,其中.

若存在一個(gè)正整數(shù),若數(shù)列中存在連續(xù)的k項(xiàng)和該數(shù)列中另一個(gè)連續(xù)的k項(xiàng)恰好按次序?qū)?yīng)相等,則稱(chēng)數(shù)列是“k階可重復(fù)數(shù)列”,

例如數(shù)列

因?yàn)?img width=67 height=21 src="http://thumb.zyjl.cn/pic1/1899/sx/8/390808.gif" >與按次序?qū)?yīng)相等,所以數(shù)列是“4階可重復(fù)數(shù)列”.

(Ⅰ)分別判斷下列數(shù)列

      ②

是否是“5階可重復(fù)數(shù)列”?如果是,請(qǐng)寫(xiě)出重復(fù)的這5項(xiàng);

(Ⅱ)若數(shù)為的數(shù)列一定是 “3階可重復(fù)數(shù)列”,則的最小值是多少?說(shuō)明理由;

(III)假設(shè)數(shù)列不是“5階可重復(fù)數(shù)列”,若在其最后一項(xiàng)后再添加一項(xiàng)0或1,均可使新數(shù)列是“5階可重復(fù)數(shù)列”,且,求數(shù)列的最后一項(xiàng)的值.

查看答案和解析>>

已知函數(shù)為切點(diǎn)的切線(xiàn)傾斜角為.

(1)求m,n的值;

(2)是否存在最小的正整數(shù)k,使得不等式恒成立?若存在,求出最小的正整數(shù)k,否則請(qǐng)說(shuō)明理由。

查看答案和解析>>

(本小題共13分)

設(shè)數(shù)列的通項(xiàng)公式為. 數(shù)列定義如下:對(duì)于正整數(shù)m,是使得不等式成立的所有n中的最小值。

(Ⅰ)若,求;

(Ⅱ)若,求數(shù)列的前2m項(xiàng)和公式;w.w.w.k.s.5.u.c.o.m    

(Ⅲ)是否存在pq,使得?如果存在,求pq的取值范圍;如果不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

已知在函數(shù)的圖象上以N(1,n)為切點(diǎn)的切線(xiàn)的傾斜角為

   (Ⅰ)求m、n的值;

   (Ⅱ)是否存在最小的正整數(shù)k,使得不等式恒成立?如果存在,請(qǐng)求出最小的正整數(shù)k;如果不存在,請(qǐng)說(shuō)明理由;

   (Ⅲ)(文科不做)求證: 

查看答案和解析>>

一、選擇題:

1.A             2.B           3.A           4.D             5.B

6.A             7.A           8.B           9.C             10.B

二、填空題:

11.{2,3}   12.   13.1+i   14.3   15.  16.24  17.  18.19.2  20.   21. 45   22.    23.2   24.

三、解答題:

25解:(1)原式展開(kāi)得:

(2)

26解:(1)設(shè)事件為A,則在7次拋骰子中出現(xiàn)5次奇數(shù),2次偶數(shù)

而拋骰子出現(xiàn)的奇數(shù)和偶數(shù)的概率為P是相等的,且為

根據(jù)獨(dú)立重復(fù)試驗(yàn)概率公式:  

(2)若

即前2次拋骰子中都是奇數(shù)或都是偶數(shù).

若前2次都是奇數(shù),則必須在后5次中拋出3次奇數(shù)2次偶數(shù),

其概率:

若前2次都是偶數(shù),則必須在后5次中拋出5次奇數(shù),其概率:

 

所求事件的概率

27解:(1)由題得

設(shè) 

兩式相減:

(2)

,即取時(shí),.

所求的最小自然數(shù)是15

28解:(1)正方體ABCD中,∵A.N分別是AD.BC的中點(diǎn),∴MN⊥AD

又∵PA⊥平面α,MNα,∴PA⊥MN,∴MN⊥平面PAD

又MN平面PAD,平面PMN⊥平面PAD

(2)由上可知:MN⊥平面PAD

∴PM⊥MN,QM⊥MN,∠PMQ是二面角P―MN―Q的平面角

PA=2,AD=2,則AM=1,PM=

PD=2,MQ=

29解:(1)拋物線(xiàn)的焦點(diǎn)是(),則雙曲線(xiàn)的

設(shè)雙曲線(xiàn)方程:

解得:

(2)聯(lián)立方程:

當(dāng)

由韋達(dá)定理:

設(shè)

代入可得:,檢驗(yàn)合格

30解:(1),

(2)令

在[-1,3]中,在此區(qū)間為增函數(shù)時(shí),

在此區(qū)間為減函數(shù).

處取得極大值

*[,3]時(shí)在此區(qū)間為增函數(shù),在x=3處取得極大值.

比較(-)和的大小得:

(無(wú)理由最大,扣3分)

即存在k=2007

(3)

 

(也可由單調(diào)性:

 


同步練習(xí)冊(cè)答案