題目列表(包括答案和解析)
如圖,
是正方體. (1)判斷直線與平面的位置關(guān)系,并說明理由;(2)判斷平面與平面的位置關(guān)系,并說明理由;
(3)判斷平面與平面的位置關(guān)系,并說明理由.
(理)如圖,在四棱錐中,ABCD是矩形,,
, 點(diǎn)是的中點(diǎn),點(diǎn)在上移動(dòng)。
(1)當(dāng)點(diǎn)為的中點(diǎn)時(shí),試判斷與平面的關(guān)系,
并說明理由;(2)求證:
以下資料是一位銷售經(jīng)理收集來的10位營(yíng)銷人員每年銷售額(千元)和銷售經(jīng)驗(yàn)(年數(shù))的關(guān)系:
(1)依據(jù)這些數(shù)據(jù)由最小二乘法求線性回歸方程;
(2)計(jì)算這組樣本數(shù)據(jù)中兩個(gè)變量的相關(guān)系數(shù)r和相關(guān)指數(shù)R2的值,并對(duì)這兩個(gè)值作統(tǒng)計(jì)解釋,試說明上面所建立的線性回歸方程是否有實(shí)際意義;
(3)預(yù)測(cè)具有20年銷售經(jīng)驗(yàn)的營(yíng)銷人員的年平均銷售額,并對(duì)這個(gè)平均值作出統(tǒng)計(jì)學(xué)的解釋.
如圖,在四棱錐中,底面是矩形, 平面,且,點(diǎn)是棱的中點(diǎn),點(diǎn)在棱上移動(dòng).
(Ⅰ)當(dāng)點(diǎn)為的中點(diǎn)時(shí),試判斷直線與平面的關(guān)系,并說明理由;
(Ⅱ)求證:.
如圖,在四棱錐中,底面是矩形,平面,且,點(diǎn)是棱的中點(diǎn),點(diǎn)在棱上移動(dòng).
(Ⅰ)當(dāng)點(diǎn)為的中點(diǎn)時(shí),試判斷直線與平面的關(guān)系,并說明理由;
(Ⅱ)求證:.
一、選擇題:
1.B 2.A 3.B 4.D 5.D 6.B 7.A
8.B 9.D 10.C 11.A 12.C
二、填空題:
13.1 14. 15.20 1 6.32 17.
18、 0 ; 19、; 20、; 21、 ③ ; 22.①③
三、解答題:
23解:(Ⅰ)因?yàn)?sub>,,所以
因此,當(dāng),即()時(shí),取得最大值;
(Ⅱ)由及得,兩邊平方得
,即.
24解:(1)當(dāng)點(diǎn)為的中點(diǎn)時(shí),。
理由如下:點(diǎn)分別為、PD的中點(diǎn),
。
,
(2),
,
,
,點(diǎn)是的中點(diǎn)
又
25解:(1)依題意知,
∵,.
∴所求橢圓的方程為.
(2)∵ 點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,
∴
解得:,.
∴.
∵ 點(diǎn)在橢圓:上,∴, 則.
∴的取值范圍為.
26解:(1)當(dāng)時(shí),.
當(dāng)時(shí),
.
∵不適合上式,
∴
(2)證明: ∵.
當(dāng)時(shí),
當(dāng)時(shí),, ①
. ②
①-②得:
得,
此式當(dāng)時(shí)也適合.
∴N.
∵,
∴.
當(dāng)時(shí),,
∴.
∵,
∴.
故,即.
綜上,.
27解:(I)由圖象在處的切線與軸平行,
知,∴①
又,故,.
(II)令,
得或
易證是的極大值點(diǎn),是極小值點(diǎn)(如圖).
令,得或.
分類:(I)當(dāng)時(shí),,∴ . ②
由①,②解得,符合前提 .
(II)當(dāng)時(shí),,
∴. ③
由①,③得 .
記,
∵,
∴在上是增函數(shù),又,∴,
∴在上無實(shí)數(shù)根.
綜上,的值為.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com