題目列表(包括答案和解析)
對于函數(shù)有下列命題
①函數(shù)的最小正周期是; ②函數(shù)是偶函數(shù);
③函數(shù)的圖象關(guān)于直線對稱; ④函數(shù)在上為減函數(shù);
其中正確的命題的序號是
A.②③ B.②④ C.①③ D.①②③
下列命題中:
①若函數(shù)的定義域?yàn)镽,則一定是偶函數(shù);
②若是定義域?yàn)镽的奇函數(shù),對于任意的都有,則函數(shù)的圖象關(guān)于直線對稱;
③已知是函數(shù)定義域內(nèi)的兩個值,且,若,則是減函數(shù);
④若是定義在R上的奇函數(shù),且也為奇函數(shù),則是以4為周期的周期函數(shù)。
其中正確的命題序號是_____________。
一、選擇題:
1.B 2.A 3.B 4.D 5.D 6.B 7.A
8.B 9.D 10.C 11.A 12.C
二、填空題:
13.1 14. 15.20 1 6.32 17.
18、 0 ; 19、; 20、; 21、 ③ ; 22.①③
三、解答題:
23解:(Ⅰ)因?yàn)?sub>,,所以
因此,當(dāng),即()時,取得最大值;
(Ⅱ)由及得,兩邊平方得
,即.
24解:(1)當(dāng)點(diǎn)為的中點(diǎn)時,。
理由如下:點(diǎn)分別為、PD的中點(diǎn),
。
,
(2),
,
,
,點(diǎn)是的中點(diǎn)
又
25解:(1)依題意知,
∵,.
∴所求橢圓的方程為.
(2)∵ 點(diǎn)關(guān)于直線的對稱點(diǎn)為,
∴
解得:,.
∴.
∵ 點(diǎn)在橢圓:上,∴, 則.
∴的取值范圍為.
26解:(1)當(dāng)時,.
當(dāng)時,
.
∵不適合上式,
∴
(2)證明: ∵.
當(dāng)時,
當(dāng)時,, ①
. ②
①-②得:
得,
此式當(dāng)時也適合.
∴N.
∵,
∴.
當(dāng)時,,
∴.
∵,
∴.
故,即.
綜上,.
27解:(I)由圖象在處的切線與軸平行,
知,∴①
又,故,.
(II)令,
得或
易證是的極大值點(diǎn),是極小值點(diǎn)(如圖).
令,得或.
分類:(I)當(dāng)時,,∴ . ②
由①,②解得,符合前提 .
(II)當(dāng)時,,
∴. ③
由①,③得 .
記,
∵,
∴在上是增函數(shù),又,∴,
∴在上無實(shí)數(shù)根.
綜上,的值為.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com