(2)若函數(shù)在區(qū)間上單調(diào)遞增.求m的取值范圍. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)數(shù)學(xué)公式的單調(diào)遞增區(qū)間為[m,n]
(1)求證f(m)f(n)=-4;
(2)當(dāng)n-m取最小值時(shí),點(diǎn)p(x1,y1),Q(x2,y2)(a<x1<x2<n),是函數(shù)f(x)圖象上的兩點(diǎn),若存在x0使得f′(x0)=數(shù)學(xué)公式,x求證x1<|x0|<x2

查看答案和解析>>

已知函數(shù)的單調(diào)遞增區(qū)間為[m,n]
(1)求證f(m)f(n)=-4;
(2)當(dāng)n-m取最小值時(shí),點(diǎn)p(x1,y1),Q(x2,y2)(a<x1<x2<n),是函數(shù)f(x)圖象上的兩點(diǎn),若存在x使得f′(x)=,x求證x1<|x|<x2

查看答案和解析>>

已知函數(shù)的單調(diào)遞增區(qū)間為[m,n]
(1)求證f(m)f(n)=-4;
(2)當(dāng)n-m取最小值時(shí),點(diǎn)p(x1,y1),Q(x2,y2)(a<x1<x2<n),是函數(shù)f(x)圖象上的兩點(diǎn),若存在x使得f′(x)=,x求證x1<|x|<x2

查看答案和解析>>

已知函數(shù)在區(qū)間,上單調(diào)遞增,在區(qū)間[-2,2]上單調(diào)遞減.

(1)求的解析式;

(2)設(shè),若對(duì)任意的1、x­2不等式恒成立,求實(shí)數(shù)m的最小值。

 

查看答案和解析>>

已知函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間[-2,2]上單調(diào)遞減.
(1)求的解析式;
(2)設(shè),若對(duì)任意的1、x­2不等式恒成立,求實(shí)數(shù)m的最小值。

查看答案和解析>>

一、選擇題:

1.B   2.C  3.D   4.C   5. B   6.A   7. C   8.A  9.A  10. B 11.B  12. A

二、填空題:

13.       14.      15.       16.     

17. 360     18.      19.       20.1320    21.2/5   22.5    23. 9/8      24. 正四面體內(nèi)任意一點(diǎn)到各個(gè)面的距離之和等于此正四面體的高   25.5/7   26.   

三、解答題:

27解:(I)

(II)由   得

          

x的取值范圍是

28解:(1)甲隊(duì)以二比一獲勝,即前兩場(chǎng)中甲勝1場(chǎng),第三場(chǎng)甲獲勝,其概率為

(2)乙隊(duì)以2:0獲勝的概率為;

乙隊(duì)以2:1獲勝的概率為

∴乙隊(duì)獲勝的概率為P2=P'2+P''2=0.16+0.192=0.352.

29解:(1)

由①②解得a=1,b=3

(2)

30解:(1)設(shè)正三棱柱的側(cè)棱長為.取中點(diǎn),連

是正三角形,

又底面側(cè)面,且交線為

側(cè)面

,則直線與側(cè)面所成的角為

中,,解得

此正三棱柱的側(cè)棱長為.                 

 注:也可用向量法求側(cè)棱長.

(2)解法1:過,連,

側(cè)面為二面角的平面角.

中,,

中,

故二面角的大小為.      

(3)解法1:由(2)可知,平面,平面平面,且交線為

,則平面

中,

中點(diǎn),點(diǎn)到平面的距離為. 

解法2:(思路)取中點(diǎn),連,

,易得平面平面,且交線為

過點(diǎn),則的長為點(diǎn)到平面的距離.

解法3:(思路)等體積變換:由可求.

解法4:(向量法,見后)

題(Ⅱ)、(Ⅲ)的向量解法:

(2)解法2:如圖,建立空間直角坐標(biāo)系

設(shè)為平面的法向量.

.取

又平面的一個(gè)法向量

結(jié)合圖形可知,二面角的大小為.     

(3)解法4:由(2)解法2,

點(diǎn)到平面的距離

31解:(1)由已知,,),

,),且

∴數(shù)列是以為首項(xiàng),公差為1的等差數(shù)列.

(2)∵,∴,要使恒成立,

恒成立,

恒成立,

恒成立.

(?)當(dāng)為奇數(shù)時(shí),即恒成立,

當(dāng)且僅當(dāng)時(shí),有最小值為1,

(?)當(dāng)為偶數(shù)時(shí),即恒成立,

當(dāng)且僅當(dāng)時(shí),有最大值,

,又為非零整數(shù),則

綜上所述,存在,使得對(duì)任意,都有

32解:(1)∵,∴,

又∵,∴,

,∴橢圓的標(biāo)準(zhǔn)方程為.    

(2)顯然的斜率不為0,當(dāng)的斜率不為0時(shí),設(shè)方程為,

代入橢圓方程整理得:

,

,

即:

當(dāng)且僅當(dāng),即(此時(shí)適合于的條件)取到等號(hào).

∴三角形△ABF面積的最大值是.                      

 

 


同步練習(xí)冊(cè)答案