某同學(xué)在自己房間的墻上掛了一塊邊長(zhǎng)為3的正方形木板.上面畫(huà)有振幅為1的正弦曲線半個(gè)周期的圖案用于練習(xí)投鏢.如圖所示.假設(shè)每次投鏢都能擊中木板并且擊中木板上每個(gè)點(diǎn)的可能性相同.則他擊中圖中陰影部分的概率為 查看更多

 

題目列表(包括答案和解析)

在某校組織的一次籃球定點(diǎn)投籃訓(xùn)練中,規(guī)定每人最多投3次;在A處每投進(jìn)一球得3分,在B處每投進(jìn)一球得2分;如果前兩次得分之和超過(guò)3分即停止投籃,否則投第三次,某同學(xué)在A處的命中率q1為0.25,在B處的命中率為q2,該同學(xué)選擇先在A處投一球,以后都在B處投,用ξ表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為:
ξ 0 2   3 4 5
 p 0.03   0.24 0.01 0.48 0.24
(1)求q2的值;
(2)求隨機(jī)變量ξ的數(shù)學(xué)期望Eξ;
(3)試比較該同學(xué)選擇都在B處投籃得分超過(guò)3分與選擇上述方式投籃得分超過(guò)3分的概率的大小.

查看答案和解析>>

一次化學(xué)實(shí)驗(yàn)中需要用天平稱出20g氧化銅粉末,某同學(xué)發(fā)現(xiàn)自己所用的天平是不準(zhǔn)的(其兩臂不等長(zhǎng)),因此,他采用下列操作方法:選10g的法碼放入左盤(pán),置氧化銅粉末于右盤(pán)使之平衡,取出氧化銅粉末,然后又將10g法碼放于右盤(pán),置氧化銅粉末于左盤(pán),平衡后再取出.他這樣稱兩次得到的氧化銅粉末之和應(yīng)該
大于
大于
20g.(選用“大于”,“小于”,“等于”)

查看答案和解析>>

(2012•浙江模擬)為了分析某同學(xué)在班級(jí)中的數(shù)學(xué)學(xué)習(xí)情況,統(tǒng)計(jì)了該同學(xué)在6次月考中數(shù)學(xué)名次,用莖葉圖表示如圖所示:
1
2
.
3 5 8 9
1 2
,則該組數(shù)據(jù)的中位數(shù)為
18.5
18.5

查看答案和解析>>

在某校組織的一次籃球定點(diǎn)投籃訓(xùn)練中,規(guī)定每人最多投3次;在A處每次投進(jìn)一球得3分,在B處每投進(jìn)一球得2分,如果前兩次得分之和超過(guò)3分即停止投籃,否則投第三次,某同學(xué)在A處的命中率q1為0.25,在B處的命中率為q2,該同學(xué)選擇先在A處投一球,以后都在B處投,用ξ表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,ξ=0的概率為0.03.
(1)寫(xiě)出ξ值所有可能的值;
(2)求q2的值;
(3)求得到總分最大值的概率.

查看答案和解析>>

在某校組織的一次籃球定點(diǎn)投籃訓(xùn)練中,規(guī)定每人最多投3次;在A處每投進(jìn)一球得3分,在B處每投進(jìn)一球得2分;如果前兩次得分之和超過(guò)3分即停止投籃,否則投第三次,某同學(xué)在A處的命中率q1為0.25,在B處的命中率為q2,該同學(xué)選擇先在A處投一球,以后都在B處投,用ξ表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為
  ξ 0 2    3    4    5
        p 0.03    P1    P2 P3 P4
(1)求q2的值;
(2)求隨機(jī)變量ξ的數(shù)學(xué)期望Eξ.

查看答案和解析>>

一、選擇題:

1.B   2.C  3.D   4.C   5. B   6.A   7. C   8.A  9.A  10. B 11.B  12. A

二、填空題:

13.       14.      15.       16.     

17. 360     18.      19.       20.1320    21.2/5   22.5    23. 9/8      24. 正四面體內(nèi)任意一點(diǎn)到各個(gè)面的距離之和等于此正四面體的高   25.5/7   26.   

三、解答題:

27解:(I)

(II)由   得

          

x的取值范圍是

28解:(1)甲隊(duì)以二比一獲勝,即前兩場(chǎng)中甲勝1場(chǎng),第三場(chǎng)甲獲勝,其概率為

(2)乙隊(duì)以2:0獲勝的概率為;

乙隊(duì)以2:1獲勝的概率為

∴乙隊(duì)獲勝的概率為P2=P'2+P''2=0.16+0.192=0.352.

29解:(1)

        • <bdo id="myas4"><tr id="myas4"></tr></bdo>
        • 由①②解得a=1,b=3

          (2)

          30解:(1)設(shè)正三棱柱的側(cè)棱長(zhǎng)為.取中點(diǎn),連

          是正三角形,

          又底面側(cè)面,且交線為

          側(cè)面

          ,則直線與側(cè)面所成的角為

          中,,解得

          此正三棱柱的側(cè)棱長(zhǎng)為.                 

           注:也可用向量法求側(cè)棱長(zhǎng).

          (2)解法1:過(guò),連,

          側(cè)面為二面角的平面角.

          中,,

          ,

          中,

          故二面角的大小為.      

          (3)解法1:由(2)可知,平面,平面平面,且交線為,

          過(guò),則平面

          中,

          中點(diǎn),點(diǎn)到平面的距離為. 

          解法2:(思路)取中點(diǎn),連

          ,易得平面平面,且交線為

          過(guò)點(diǎn),則的長(zhǎng)為點(diǎn)到平面的距離.

          解法3:(思路)等體積變換:由可求.

          解法4:(向量法,見(jiàn)后)

          題(Ⅱ)、(Ⅲ)的向量解法:

          (2)解法2:如圖,建立空間直角坐標(biāo)系

          設(shè)為平面的法向量.

          .取

          又平面的一個(gè)法向量

          結(jié)合圖形可知,二面角的大小為.     

          (3)解法4:由(2)解法2,

          點(diǎn)到平面的距離

          31解:(1)由已知,),

          ),且

          ∴數(shù)列是以為首項(xiàng),公差為1的等差數(shù)列.

          (2)∵,∴,要使恒成立,

          恒成立,

          恒成立,

          恒成立.

          (?)當(dāng)為奇數(shù)時(shí),即恒成立,

          當(dāng)且僅當(dāng)時(shí),有最小值為1,

          (?)當(dāng)為偶數(shù)時(shí),即恒成立,

          當(dāng)且僅當(dāng)時(shí),有最大值,

          ,又為非零整數(shù),則

          綜上所述,存在,使得對(duì)任意,都有

          32解:(1)∵,∴,

          又∵,∴

          ,∴橢圓的標(biāo)準(zhǔn)方程為.    

          (2)顯然的斜率不為0,當(dāng)的斜率不為0時(shí),設(shè)方程為,

          代入橢圓方程整理得:

          ,

          ,

          即:

          當(dāng)且僅當(dāng),即(此時(shí)適合于的條件)取到等號(hào).

          ∴三角形△ABF面積的最大值是.                      

           

           


          同步練習(xí)冊(cè)答案