②當(dāng)時.與滿足如下條件: 查看更多

 

題目列表(包括答案和解析)

(14分)數(shù)列和數(shù)列由下列條件確定:

②當(dāng)時,滿足如下條件:當(dāng)時,;當(dāng)時,

解答下列問題:

(Ⅰ)證明數(shù)列是等比數(shù)列;

(Ⅱ)求數(shù)列的前n項和為

(Ⅲ)是滿足的最大整數(shù)時,用表示n的滿足的條件.

查看答案和解析>>

(14分)數(shù)列和數(shù)列由下列條件確定:

;

②當(dāng)時,滿足如下條件:當(dāng)時,;當(dāng)時,。

解答下列問題:

(Ⅰ)證明數(shù)列是等比數(shù)列;

(Ⅱ)求數(shù)列的前n項和為;

查看答案和解析>>

給定有限個正數(shù)滿足條件T:每個數(shù)都不大于50且總和L=1275.現(xiàn)將這些數(shù)按下列要求進(jìn)行分組,每組數(shù)之和不大于150且分組的步驟是:首先,從這些數(shù)中選擇這樣一些數(shù)構(gòu)成第一組,使得150與這組數(shù)之和的差r1與所有可能的其他選擇相比是最小的,r1稱為第一組余差;然后,在去掉已選入第一組的數(shù)后,對余下的數(shù)按第一組的選擇方式構(gòu)成第二組,這時的余差為r2;如此繼續(xù)構(gòu)成第三組(余差為r3)、第四組(余差為r4)、…,直至第N組(余差為rN)把這些數(shù)全部分完為止.
(Ⅰ)判斷r1,r2,…,rN的大小關(guān)系,并指出除第N組外的每組至少含有幾個數(shù);
(Ⅱ)當(dāng)構(gòu)成第n(n<N)組后,指出余下的每個數(shù)與rn的大小關(guān)系,并證明rn-1
150n-Ln-1

(Ⅲ)對任何滿足條件T的有限個正數(shù),證明:N≤11.

查看答案和解析>>

給定有限個正數(shù)滿足條件T:每個數(shù)都不大于50且總和L=1275.現(xiàn)將這些數(shù)按下列要求進(jìn)行分組,每組數(shù)之和不大于150且分組的步驟是:
首先,從這些數(shù)中選擇這樣一些數(shù)構(gòu)成第一組,使得150與這組數(shù)之和的差r1與所有可能的其他選擇相比是最小的,r1稱為第一組余差;
然后,在去掉已選入第一組的數(shù)后,對余下的數(shù)按第一組的選擇方式構(gòu)成第二組,這時的余差為r2;如此繼續(xù)構(gòu)成第三組(余差為r3)、第四組(余差為r4)、…,直至第N組(余差為rN)把這些數(shù)全部分完為止.
(I)判斷r1,r2,…,rN的大小關(guān)系,并指出除第N組外的每組至少含有幾個數(shù)
(II)當(dāng)構(gòu)成第n(n<N)組后,指出余下的每個數(shù)與rn的大小關(guān)系,并證明數(shù)學(xué)公式
(III)對任何滿足條件T的有限個正數(shù),證明:N≤11.

查看答案和解析>>

給定有限個正數(shù)滿足條件T:每個數(shù)都不大于50且總和L=1275.現(xiàn)將這些數(shù)按下列要求進(jìn)行分組,每組數(shù)之和不大于150且分組的步驟是:
首先,從這些數(shù)中選擇這樣一些數(shù)構(gòu)成第一組,使得150與這組數(shù)之和的差r1與所有可能的其他選擇相比是最小的,r1稱為第一組余差;
然后,在去掉已選入第一組的數(shù)后,對余下的數(shù)按第一組的選擇方式構(gòu)成第二組,這時的余差為r2;如此繼續(xù)構(gòu)成第三組(余差為r3)、第四組(余差為r4)、…,直至第N組(余差為rN)把這些數(shù)全部分完為止.
(I)判斷r1,r2,…,rN的大小關(guān)系,并指出除第N組外的每組至少含有幾個數(shù)
(II)當(dāng)構(gòu)成第n(n<N)組后,指出余下的每個數(shù)與rn的大小關(guān)系,并證明rn-1
150n-L
n-1

(III)對任何滿足條件T的有限個正數(shù),證明:N≤11.

查看答案和解析>>

一、填空題

1.[]                   2.180                         3.40                   4.5                     5.

6.15                          7.30                          8.4                     9.                10.

11.(0 ,)            12.              13.                 14.4

二、解答題

15.(1)

                           

             

              (舍去)……………………………………………………7分

(2)

              …………………………………………………………………14分

16.

          所以O(shè)E//平面AA1B1B……………………………………………………………14分

17.

18.解:(1)為圓周的點(diǎn)到直線的距離為-------2分

設(shè)的方程為

的方程為----------------------------------------------------------------5分

(2)設(shè)橢圓方程為,半焦距為c,則

橢圓與圓O恰有兩個不同的公共點(diǎn),則 ------------------------------6分

當(dāng)時,所求橢圓方程為;-------------8分

當(dāng)時,

所求橢圓方程為-------------------------------------------------------------10分

(3)設(shè)切點(diǎn)為N,則由題意得,在中,,則,

N點(diǎn)的坐標(biāo)為,------------------- 11分

若橢圓為其焦點(diǎn)F1,F2

分別為點(diǎn)A,B故,-----------------------------------13分

若橢圓為,其焦點(diǎn)為,

此時    -------------------------------------------15分

 

 

 

 

 

 

 

 

 

 

19.

 

第Ⅱ卷(附加題)參考答案

21.(1)                                     ………………………………………………4分

   (2) 時對應(yīng)的向量為 ,時對應(yīng)的向量為……10分

 

22.解:(1)由方程的(2)式平方減去(1)式得:  5分

(2)曲線的焦點(diǎn)到準(zhǔn)線的距離為,離心率為,

所以曲線的極坐標(biāo)方程為                     10分

23.解:(1)賦值法:分別令,,得 -----2分

(2),-------------------------------------------------6分

(3)的系數(shù)為:

所以,當(dāng)時,展開式中的系數(shù)最小,為81.----10分

24.

 


同步練習(xí)冊答案