(1)當(dāng)>0時.求的單調(diào)區(qū)間和極值, 查看更多

 

題目列表(包括答案和解析)

設(shè)a為實數(shù),函數(shù),x

(1) 當(dāng)a= 0時,求的極大值、極小值;

(2) 若x>0時,,求a的取值范圍;.

(3) 若函數(shù)在區(qū)間(0,1)上是減函數(shù),求a的取值范圍.

 

查看答案和解析>>

 (本小題滿分14分)

已知函數(shù)f (x)=ex,g(x)=lnx,h(x)=kx+b.

(1)當(dāng)b=0時,若對x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求實數(shù)k的取值范圍;

(2)設(shè)h(x)的圖象為函數(shù)f (x)和g(x)圖象的公共切線,切點分別為(x1, f (x1))和(x2, g(x2)),其中x1>0.

①求證:x1>1>x2;

②若當(dāng)x≥x1時,關(guān)于x的不等式ax2-x+xe+1≤0恒成立,求實數(shù)a的取值范圍.

 

查看答案和解析>>

已知是偶函數(shù),當(dāng)>0 時, ,且當(dāng)時,成立,則的最小值為

              B.                 C.              D. 1

 

查看答案和解析>>

函數(shù)是定義域為R的奇函數(shù),當(dāng)>0時, =-+1,則當(dāng)<0時, 的解析式為          

 

查看答案和解析>>

(本小題滿分12分)

設(shè)函數(shù)是定義域在,并且滿足,且當(dāng)>0時,<0。

(1)求的值,

(2)判斷函數(shù)的奇偶性,

(3)如果,求的取值范圍。

 

查看答案和解析>>

一、填空題

1.[]                   2.180                         3.40                   4.5                     5.

6.15                          7.30                          8.4                     9.                10.

11.(0 ,)            12.              13.                 14.4

二、解答題

15.(1)

                           

             

              (舍去)……………………………………………………7分

(2)

              …………………………………………………………………14分

16.

          所以O(shè)E//平面AA1B1B……………………………………………………………14分

17.

18.解:(1)為圓周的點到直線的距離為-------2分

設(shè)的方程為

的方程為----------------------------------------------------------------5分

(2)設(shè)橢圓方程為,半焦距為c,則

橢圓與圓O恰有兩個不同的公共點,則 ------------------------------6分

當(dāng)時,所求橢圓方程為;-------------8分

當(dāng)時,

所求橢圓方程為-------------------------------------------------------------10分

(3)設(shè)切點為N,則由題意得,在中,,則,

N點的坐標為,------------------- 11分

若橢圓為其焦點F1,F2

分別為點A,B故,-----------------------------------13分

若橢圓為,其焦點為,

此時    -------------------------------------------15分

 

 

 

 

 

 

 

 

 

 

19.

 

第Ⅱ卷(附加題)參考答案

21.(1)                                     ………………………………………………4分

   (2) 時對應(yīng)的向量為 ,時對應(yīng)的向量為……10分

 

22.解:(1)由方程的(2)式平方減去(1)式得:  5分

(2)曲線的焦點到準線的距離為,離心率為,

所以曲線的極坐標方程為                     10分

23.解:(1)賦值法:分別令,得 -----2分

(2),-------------------------------------------------6分

(3),的系數(shù)為:

所以,當(dāng)時,展開式中的系數(shù)最小,為81.----10分

24.

 


同步練習(xí)冊答案