(3)過M點作直線與圓相切于點N,設(2)中橢圓的兩個焦點分別為F1,F2,求三角形 面積. 查看更多

 

題目列表(包括答案和解析)

已知直線l的方程為x=-2,且直線l與x軸交于點M,圓O:x2+y2=1 與x軸交于A,B兩點.
(1)求以l為準線,中心在原點,且與圓O恰有兩個公共點的橢圓方程;
(2)過M點作直線l1與圓相切于點N,設(2)中橢圓的兩個焦點分別為F1F2,求三角形△NF1F2面積.

查看答案和解析>>

已知直線l的方程為x=-2,且直線l與x軸交于點M,圓O:x2+y2=1與x軸交于A,B兩點.
(1)過M點的直線l1交圓于P、Q兩點,且圓孤PQ恰為圓周的數(shù)學公式,求直線l1的方程;
(2)求以l為準線,中心在原點,且與圓O恰有兩個公共點的橢圓方程;
(3)過M點作直線l2與圓相切于點N,設(2)中橢圓的兩個焦點分別為F1,F(xiàn)2,求三角形△NF1F2面積.

查看答案和解析>>

已知直線l的方程為x=-2,且直線l與x軸交于點M,圓O:x2+y2=1 與x軸交于A,B兩點.
(1)求以l為準線,中心在原點,且與圓O恰有兩個公共點的橢圓方程;
(2)過M點作直線l1與圓相切于點N,設(2)中橢圓的兩個焦點分別為F1F2,求三角形△NF1F2面積.

查看答案和解析>>

已知直線l的方程為x=-2,且直線l與x軸交于點M,圓O:x2+y2=1 與x軸交于A,B兩點.
(1)求以l為準線,中心在原點,且與圓O恰有兩個公共點的橢圓方程;
(2)過M點作直線l1與圓相切于點N,設(2)中橢圓的兩個焦點分別為F1F2,求三角形△NF1F2面積.

查看答案和解析>>

已知直線l的方程為x=-2,且直線l與x軸交于點M,圓O:x2+y2=1與x軸交于A,B兩點.
(1)過M點的直線l1交圓于P、Q兩點,且圓孤PQ恰為圓周的,求直線l1的方程;
(2)求以l為準線,中心在原點,且與圓O恰有兩個公共點的橢圓方程;
(3)過M點作直線l2與圓相切于點N,設(2)中橢圓的兩個焦點分別為F1,F(xiàn)2,求三角形△NF1F2面積.

查看答案和解析>>

一、填空題

1.[]                   2.180                         3.40                   4.5                     5.

6.15                          7.30                          8.4                     9.                10.

11.(0 ,)            12.              13.                 14.4

二、解答題

15.(1)

                           

             

              (舍去)……………………………………………………7分

(2)

              …………………………………………………………………14分

16.

          所以OE//平面AA1B1B……………………………………………………………14分

17.

18.解:(1)為圓周的點到直線的距離為-------2分

的方程為

的方程為----------------------------------------------------------------5分

(2)設橢圓方程為,半焦距為c,則

橢圓與圓O恰有兩個不同的公共點,則 ------------------------------6分

時,所求橢圓方程為;-------------8分

時,

所求橢圓方程為-------------------------------------------------------------10分

(3)設切點為N,則由題意得,在中,,則

N點的坐標為,------------------- 11分

若橢圓為其焦點F1,F2

分別為點A,B故,-----------------------------------13分

若橢圓為,其焦點為,

此時    -------------------------------------------15分

 

 

 

 

 

 

 

 

 

 

19.

 

第Ⅱ卷(附加題)參考答案

21.(1)                                     ………………………………………………4分

   (2) 時對應的向量為 ,時對應的向量為……10分

 

22.解:(1)由方程的(2)式平方減去(1)式得:  5分

(2)曲線的焦點到準線的距離為,離心率為

所以曲線的極坐標方程為                     10分

23.解:(1)賦值法:分別令,,得 -----2分

(2),-------------------------------------------------6分

(3)的系數(shù)為:

所以,當時,展開式中的系數(shù)最小,為81.----10分

24.

 


同步練習冊答案