題目列表(包括答案和解析)
已知函數的最小值為0,其中
(Ⅰ)求的值;
(Ⅱ)若對任意的有≤成立,求實數的最小值;
(Ⅲ)證明().
【解析】(1)解: 的定義域為
由,得
當x變化時,,的變化情況如下表:
x |
|||
- |
0 |
+ |
|
極小值 |
因此,在處取得最小值,故由題意,所以
(2)解:當時,取,有,故時不合題意.當時,令,即
令,得
①當時,,在上恒成立。因此在上單調遞減.從而對于任意的,總有,即在上恒成立,故符合題意.
②當時,,對于,,故在上單調遞增.因此當取時,,即不成立.
故不合題意.
綜上,k的最小值為.
(3)證明:當n=1時,不等式左邊==右邊,所以不等式成立.
當時,
在(2)中取,得 ,
從而
所以有
綜上,,
已知函數f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
當時單調遞減;當時單調遞增,故當時,取最小值
于是對一切恒成立,當且僅當. ①
令則
當時,單調遞增;當時,單調遞減.
故當時,取最大值.因此,當且僅當時,①式成立.
綜上所述,的取值集合為.
(Ⅱ)由題意知,令則
令,則.當時,單調遞減;當時,單調遞增.故當,即
從而,又
所以因為函數在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使即成立.
【點評】本題考查利用導函數研究函數單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數與方程思想等數學方法.第一問利用導函數法求出取最小值對一切x∈R,f(x) 1恒成立轉化為從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數,研究這個函數的性質進行分析判斷.
已知函數,.
(Ⅰ)若函數依次在處取到極值.求的取值范圍;
(Ⅱ)若存在實數,使對任意的,不等式 恒成立.求正整數的最大值.
【解析】第一問中利用導數在在處取到極值點可知導數為零可以解得方程有三個不同的實數根來分析求解。
第二問中,利用存在實數,使對任意的,不等式 恒成立轉化為,恒成立,分離參數法求解得到范圍。
解:(1)
①
(2)不等式 ,即,即.
轉化為存在實數,使對任意的,不等式恒成立.
即不等式在上恒成立.
即不等式在上恒成立.
設,則.
設,則,因為,有.
故在區(qū)間上是減函數。又
故存在,使得.
當時,有,當時,有.
從而在區(qū)間上遞增,在區(qū)間上遞減.
又[來源:]
所以當時,恒有;當時,恒有;
故使命題成立的正整數m的最大值為5
已知函數y=cos2x+sinxcosx+1,x∈R.
(1)求函數的最小正周期;
(2)求函數的單調減區(qū)間.
【解析】第一問中利用化為單一三角函數y=sin(2x+)+.,然后利用周期公式求解得到。第二問中,2x+落在正弦函數的增區(qū)間里面,解得的x的范圍即為所求,
解:因為y=cos2x+sinxcosx+1,x∈R.所以y=sin(2x+)+.
(1)周期為T==π,
(2)
已知函數;
(1)若函數在其定義域內為單調遞增函數,求實數的取值范圍。
(2)若函數,若在[1,e]上至少存在一個x的值使成立,求實數的取值范圍。
【解析】第一問中,利用導數,因為在其定義域內的單調遞增函數,所以 內滿足恒成立,得到結論第二問中,在[1,e]上至少存在一個x的值使成立,等價于不等式 在[1,e]上有解,轉換為不等式有解來解答即可。
解:(1),
因為在其定義域內的單調遞增函數,
所以 內滿足恒成立,即恒成立,
亦即,
即可 又
當且僅當,即x=1時取等號,
在其定義域內為單調增函數的實數k的取值范圍是.
(2)在[1,e]上至少存在一個x的值使成立,等價于不等式 在[1,e]上有解,設
上的增函數,依題意需
實數k的取值范圍是
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com